Câu hỏi:

03/02/2026 9 Lưu

Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\]\[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại \[K\]. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tam giác \[ACF\] là tam giác

A. cân tại \[F\].          
B. cân tại \[C\].        
C. cân tại \[A\].                          
D. đều.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Xét \[\left( O \right)\] có \(\wid (ảnh 1)

Xét \[\left( O \right)\] có \(\widehat {EAC} = \widehat {EDC}\) (hai góc nội tiếp cùng chắn một cung).

Xét tứ giác nội tiếp \[AHCK\] có \(\widehat {KAC} = \widehat {KHC}\) nên \[\widehat {EDC} = \widehat {KHC} = \widehat {KAC}\].

Mà hai góc ở vị trí đồng vị nên \[KH\,{\rm{//}}\,ED\].

Xét tam giác CFD có \[KH\,{\rm{//}}\,ED\] mà \[H\] là trung điểm của \[DC\] (do \[AB \bot DC\]) nên \[L\] là trung điểm của \[CF\].

Xét tam giác \[ACF\] có \[AK\] vừa là đường trung tuyến vừa là đường cao nên \[\Delta ACF\] cân tại \[A\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Tứ giác \[ABOC\]là hình thoi.             
B. Tứ giác \[ABOC\] nội tiếp.
C. Tứ giác \[ABOC\] không nội tiếp.       
D. Tứ giác \[ABOC\] là hình bình hành.

Lời giải

Chọn B

Ta có \[AB\] và \[AC\] là hai tiếp tu (ảnh 1)

Ta có \[AB\] và \[AC\] là hai tiếp tuyến cắt nhau suy ra \[AB = AC\] (tính chất hai tiếp tuyến cắt nhau).

Xét tứ giác \[ABOC\] có:

\(AB = AC\) và \[OB = OC\].

Suy ra tứ giác \[ABOC\] chưa là hình thoi và không là hình bình hành, do đó đáp án A, D sai.

Có \(\widehat {ABO} = 90^\circ \) (do \[AB\] là tiếp tuyến của \[\left( O \right)\])

\(\widehat {ACO} = 90^\circ \) (do \[AC\] là tiếp tuyến của \[\left( O \right)\])

Suy ra \(\widehat {ABO} + \widehat {ACO} = 180^\circ \)

Suy ra tứ giác \[ABOC\] là tứ giác nội tiếp.

Câu 2

A. Tứ giác \[BEFC\] là tứ giác nội tiếp.   
B. Tứ giác \[BEFC\] không nội tiếp.
C. Tứ giác \[AFHE\] là hình vuông.         
D. Tứ giác \[AFHE\] không nội tiếp.

Lời giải

Chọn A

Hướng dẫn giải  Chọn B  – Xét đáp án A, ta thấy: (ảnh 1)

Xét tứ giác \[AEHF\] có: \(\widehat A = \widehat E = \widehat F = 90^\circ \)

Suy ra tứ giác \[AEHF\] là hình chứ nhật.

Suy ra tứ giác \[AEHF\] là tứ giác nội tiếp (có tổng hai góc đối diện bằng \(180^\circ \)).

Do đó \(\widehat {AFE} = \widehat {AHE}\) (hai góc nội tiếp cùng chắn cung \[AE\])

Mà \(\widehat {AHE} = \widehat {ABH}\) (cùng phụ góc \[BHE\])

Suy ra \(\widehat {AFE} = \widehat {ABC}\).

Xét tứ giác \[BEFC\] có: \(\widehat {AFE} = \widehat {ABC}\)

Góc \[AFE\] là góc ngoài tại đỉnh \[F\].

Suy ra \[BEFC\] là tứ giác nội tiếp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hình I                   
B. Hình II
C. Hình III                 
D. Hình IV

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Mọi tứ giác đều nội tiếp được đường tròn.
B. Trong một tứ giác nội tiếp, tổng số đo hai góc đối bằng \[{90^0}\].
C. Tứ giác có tổng hai góc bằng 1800 thì tứ giác đó nội tiếp.
D. Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới hai góc bằng nhau thì tứ giác đó nội tiếp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP