Câu hỏi:

03/02/2026 5 Lưu

Cho đường tròn \((O)\). Từ một điểm \(M\). ở ngoài đường tròn \((O)\), kẻ hai tiếp tuyến \(MA,MB\) với đường tròn \((O)(A,B\) là hai tiếp điểm).

a) Chứng minh \(MAOB\) là tứ giác nội tiếp.

b) Vẽ đường kính \(BK\) của đường tròn \((O)\), \(H\) là điểm trên \(BK\) sao cho \(AH\) vuông góc \(BK\). Điểm \(I\) là giao điểm của \(AH,MK\). Chứng minh \(I\) là trung điểm của \(HA\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho đường tròn \((O)\). Từ một điểm \ (ảnh 1)

a) Chứng minh \(MAOB\) là tứ giác nội tiếp.

Vì \(MA,MB\) là các tiếp tuyến của \((O)\) lần lượt tại \(A,B\) nên \(\widehat {MAO} = \widehat {MBO} = 90^\circ \) (định nghĩa).

Tứ giác \(MAOB\) có \(\widehat {MAO} + \widehat {MBO} = 180^\circ \).

Suy ra tứ giác \(MAOB\) nội tiếp (tứ giác có tổng hai góc đối bằng bằng \(180^\circ \)).

b) Vẽ đường kính \(BK\) của đường tròn \((O)\), \(H\) là điểm trên \(BK\) sao cho \(AH\) vuông góc \(BK\). Điểm \(I\) là giao điểm của \(AH,MK\). Chứng minh \(I\) là trung điểm của \(HA\).

Gọi \(N\) là giao điểm của \(AB\) với \(MO\).

\(C\) là giao điểm giữa \(MK\) với đường tròn \((O)\)

Ta có: \(OA = OB \Rightarrow O\) thuộc trung trực của \(AB\).

Tứ giác \(MCNB\) có \(\widehat {MCB} = \widehat {MNB} = 90^\circ \). Suy ra tứ giác \(MCNB\) nội tiếp (tứ giác có hai đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau).

\( \Rightarrow \widehat {NMB} = \widehat {NCB}\) (hai góc cùng chắn một cung \(BN\) )

Ta có: \(\widehat {NMB} = \widehat {NBO}\) (cùng phụ với \(\widehat {MBN}\) )

\( \Rightarrow \widehat {NCB} = \widehat {NBO}.\)

Lại có: \(\widehat {NCB} + \widehat {NCI} = 90^\circ ,\widehat {NAI} + \widehat {NBO} = 90^\circ \)

Suy ra \(\widehat {NCI} = \widehat {NAI}\).

Xét tứ giác \(ACNI\) có: \(\widehat {NCI} = \widehat {NAI}(cmt)\), suy ra tứ giác \(ACNI\) nội tiếp (tứ giác có 2 đinh kề cùng nhìn một cạnh dưới các góc bằng nhau).

\( \Rightarrow \widehat {ANI} = \widehat {ACI}\) (hai góc cùng chắn cung \(AI\) ).

Trong \((O)\) có: \(\widehat {ACI} = \widehat {ABK}\) (hai góc nội tiếp cùng chấn cung \(AK\) )

Suy ra \(\widehat {ANI} = \widehat {ABK}\). Mà hai góc này vị trí đồng vị \( \Rightarrow NI//BK\)

Tam giác \(ABK\) có: \(\left\{ {\begin{array}{*{20}{l}}{NI//BK}\\{NA = NB = \frac{1}{2}AB}\end{array}} \right.\)

Suy ra \(I\) là trung điểm của \(AH \Rightarrow IA = IH\) (định lí đường trung bình của tam giác) (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) và đường cao \(AH\) gọi \( (ảnh 1)

Để chứng minh \(AMEN\) là tứ giác nội tiếp ta sẽ

chứng minh: \(\widehat {MAN} + \widehat {MEN} = {180^0}\). 

Ta cần tìm sự liên hệ của các góc \(\widehat {MAN};\widehat {MEN}\) với các  góc có sẵn của những tứ giác nội tiếp khác.

Ta có \(\widehat {MEN} = {360^0} - \left( {\widehat {MEH} + \widehat {NEH}} \right) = {360^0} - \left( {{{180}^0} - \widehat {ABC} + {{180}^0} - \widehat {ACB}} \right) = \widehat {ABC} + \widehat {ACB}\) \( = {180^0} - \widehat {BAC}\) suy ra \(\widehat {MEN} + \widehat {MAN} = {180^0}\). Hay tứ giác \(AMEN\) là tứ giác nội tiếp.

Kẻ \(MK \bot BC\), giả sử \(HE\) cắt \(MN\) tại \(I\) thì \(IH\) là cát tuyến của hai đường tròn \((BMH)\), \((CNH)\).

Lại có \(MB = MH = MA\) (Tính chất trung tuyến tam giác vuông).

Suy ra tam giác \(MBH\) cân tại \(M \Rightarrow KB = KH \Rightarrow MK\) luôn đi qua tâm đường tròn ngoại tiếp tam giác \(MBH\). Hay \(MN\) là tiếp tuyến của \((MBH)\) suy ra \(I{M^2} = IE.IH\), tương tự ta cũng có \(MN\) là tiếp tuyến của \(\left( {HNC} \right)\) suy ra \(I{N^2} = IE.IH\) do đó \(IM = IN\).

Lời giải

Cho tam giác \(ABC\) có 3 góc nhọ (ảnh 1)

a). Giả sử các đường cao của tam giác là \(AK,CI\) . Để chứng minh \(AHCP\) là tứ giác nội tiếp ta sẽ chứng minh \(\widehat {AHC} + \widehat {APC} = {180^0}\).

Ta có:

     \(\widehat {AHC} = \widehat {IHK}\) ( đối đỉnh)

     \(\widehat {APC} = \widehat {AMC} = \widehat {ABC}\) ( do tính đối xứng và góc nội tiếp cùng chắn một cung).

Như vậy ta chỉ cần chứng minh \(\widehat {ABC} + \widehat {IHK} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(BIHK\)là tứ giác nội tiếp.

b). Để chứng minh \(N,H,P\) thẳng hàng ta sẽ chứng minh \(\widehat {NHA} + \widehat {AHP} = {180^0}\) do đó ta sẽ tìm cách quy hai góc này về 2 góc đối nhau trong một tứ giác nội tiếp.

Thật vậy ta có: \(\widehat {AHP} = \widehat {ACP}\) (tính chất góc nội tiếp), \(\widehat {ACP} = \widehat {ACM}\)  (1) (Tính chất đối xứng) .

Ta thấy vai trò tứ giác \(AHCP\) giống với \(AHBN\) nên ta cũng dễ chứng minh được \(AHBN\) là tứ giác nội tiếp từ đó suy ra \(\widehat {AHN} = \widehat {ABN}\) , mặt khác \(\widehat {ABN} = \widehat {ABM}\) (2) (Tính chất đối xứng) .

Từ (1), (2) ta suy ra chỉ cần chứng minh \(\widehat {ABM} + \widehat {ACM} = {180^0}\) nhưng điều này là hiển nhiên do tứ giác \(ABMC\) nội tiếp.

Vậy \(\widehat {NHA} + \widehat {AHP} = {180^0}\) hay \(N,H,P\) thẳng hàng.