Cho nội tiếp đường tròn \(\left( {O;R} \right)\) đường kính \(AD\), đường cao \(AH\).
a) Chứng minh và đồng dạng.
b) Gọi \(a,b,c\) là độ dài ba cạnh tương ứng với các đỉnh \(A,B,C\). Chứng minh \({S_{ABC}} = \frac{{{\rm{ }}a.b.c{\rm{ }}}}{{4R}}\).
Cho nội tiếp đường tròn \(\left( {O;R} \right)\) đường kính \(AD\), đường cao \(AH\).
a) Chứng minh và đồng dạng.
b) Gọi \(a,b,c\) là độ dài ba cạnh tương ứng với các đỉnh \(A,B,C\). Chứng minh \({S_{ABC}} = \frac{{{\rm{ }}a.b.c{\rm{ }}}}{{4R}}\).
Câu hỏi trong đề: 15 bài tập Toán 9 Cánh diều Ôn tập chương 8 có đáp án !!
Quảng cáo
Trả lời:

a) Ta có \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ADC}}}\) (góc nội tiếp cùng chắn cung ). Lại có ( \(AD\) là đường kính)
Do đó (g.g)
b) \( \Rightarrow AH = \frac{{AB.AC}}{{AD}} = \frac{{AB.AC}}{{2R}}\)
Do đó \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}\frac{{AB.AC}}{{2R}}.BC = \frac{{AB.AC.BC}}{{4R}} = \frac{{abc}}{{4R}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.
Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].
b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]
Lời giải

Ta có : \(AB = BC = CD = DE = EA\,\,\left( {gt} \right)\,\,\left( * \right)\)
Xét tam giác \(ABE\) có \(AB = AE\,\,\) (gt)
Nên \(\Delta ABE\) cân tại A có \(\widehat A = 108^\circ \)
\( \Rightarrow {\widehat B_1} = {\widehat E_1} = \frac{{180^\circ - \widehat A}}{2} = \frac{{180^\circ - 108^\circ }}{2} = 36^\circ \)
Tương tự với tam giác \(BCD\), ta có : \({\widehat B_3} = {\widehat D_1} = 36^\circ \)
Lại có \(\widehat {ABC} = {\widehat B_1} + {\widehat B_2} + {\widehat B_3} = 108^\circ \)
\( \Rightarrow {\widehat B_2} = 108^\circ - \left( {{{\widehat B}_1} + {{\widehat B}_3}} \right) = 108^\circ - \left( {36^\circ + 36^\circ } \right) = 36^\circ \)
Dễ thấy \(\Delta ABE = \Delta CBD\,\,\left( {c.g.c} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.