Câu hỏi:

03/02/2026 6 Lưu

Cho tam giác \(ABC\) có các đường cao \(BE,CF\) cắt nhau tại \(H\). Gọi \(M\) là trung điểm của \(BC\) và \(I\) là trung điểm của \(AH\). Chứng minh rằng:

a) Tứ giác \[AEHF\] nội tiếp đường tròn tâm \(I\);

b) \[ME,{\rm{ }}MF\]tiếp xúc với đường tròn ngoại tiếp tứ giác \[AEHF\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác \(ABC\) có các đư (ảnh 1)

a) Dễ thấy AEH^=AFH^=90° (gt).

Tứ giác \[AEHF\] có AEH^+AFH^=180° (gt) nên nội tiếp đường tròn tâm \(I\).

b) Ta có tam giác \(BEC\) vuông tại \(E\) (gt), \(EM\) là trung tuyến

\( \Rightarrow EM = BM = CM\) hay  cân tại M \[ \Rightarrow \widehat {{B_2}} = \widehat {{E_2}}\]

Lại có \(H,E\) thuộc đường tròn tâm \(I\) nên  cân tại I \( \Rightarrow \widehat {{H_2}} = \widehat {{E_1}}\) mà \(\widehat {{H_1}} = \widehat {{H_2}}\) (đối đỉnh) \( \Rightarrow \widehat {{E_1}} = \widehat {{H_2}}\)

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

B2^+H2^=90° mà B2^=E2^,H2^=E1^(cmt)E2^+E1^=90° hay IEM^=90°MEIE

Chứng tỏ \(ME\) tiếp xúc với đường tròn \(\left( I \right)\)ngoại tiếp tứ giác \[AEHF\].

Chứng minh tương tự ta có \(MF\) tiếp xúc với \(\left( I \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác nhọn \(ABC\) có đư (ảnh 1)

Dễ thấy ACM^=90° (vì \(AM\) là đường kính). Tam giác \(ACM\) vuông tại COAC^+AMC^=90°

Lại có tam giác \(AHB\) vuông tại \(H\) (gt) BAH^+ABC^=90°

Mà \(\widehat {{\rm{AMC}}} = \widehat {{\rm{ABC}}}\) (góc nội tiếp cùng chắn cung)\( \Rightarrow \widehat {{\rm{OAC}}} = \widehat {{\rm{BAH}}}\).

Lời giải

a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.

Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].

b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP