Cho tam giác nhọn \(ABC\) có đường cao \(AH\left( {H \in BC} \right)\) và nội tiếp đường tròn tâm \(O\) có đường kính \(AM\)(Hình vẽ). Chứng minh \(\widehat {OAC} = \widehat {BAH}\)
Cho tam giác nhọn \(ABC\) có đường cao \(AH\left( {H \in BC} \right)\) và nội tiếp đường tròn tâm \(O\) có đường kính \(AM\)(Hình vẽ). Chứng minh \(\widehat {OAC} = \widehat {BAH}\)
Câu hỏi trong đề: 15 bài tập Toán 9 Cánh diều Ôn tập chương 8 có đáp án !!
Quảng cáo
Trả lời:

Dễ thấy (vì \(AM\) là đường kính). Tam giác \(ACM\) vuông tại
Lại có tam giác \(AHB\) vuông tại \(H\) (gt)
Mà \(\widehat {{\rm{AMC}}} = \widehat {{\rm{ABC}}}\) (góc nội tiếp cùng chắn cung)\( \Rightarrow \widehat {{\rm{OAC}}} = \widehat {{\rm{BAH}}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.
Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].
b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]
Lời giải

Trường hợp 1: D nằm trên cung lớn .
Ta có \(\widehat {{\rm{SCM}}} = \widehat {{\rm{SDM}}}\) (1) góc nội tiếp cùng chắn cung của đường tròn đường kính \(MC\)).
Dễ thấy (MC là đường kính). Tương tự (gt).
\( \Rightarrow \) Bốn điểm \(B,A,D,C\) cùng nằm trên một đường tròn đường kính \(BC\).
\( \Rightarrow \widehat {SDM} = \widehat {ACB}\) (2) (góc nội tiếp cùng chắn cung ).
Từ (1) và (2) \( \Rightarrow \widehat {SCM} = \widehat {MCB}\) hay \(CA\) là tia phân giác của góc\(SCB\).
Trường hợp 2: D nằm trên cung nhỏ và Trường hợp \(3:{\rm{D}}\) trùng với S. (Học sinh tự giải).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
