Câu hỏi:

03/02/2026 16 Lưu

Cho tam giác đều \(ABC\) nội tiếp đường tròn \(\left( O \right)\) như hình vẽ sau. Phép quay ngược chiều \(60^\circ \) tâm \(O\) biến các điểm \(A,B,C\) lần lượt thành các điểm\(D,E,F\). Chứng minh rằng là một lục giác đều.

Cho tam giác đều \(ABC\) nội tiếp đường tròn \(\left( (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Phép quay ngược chiều \(60^\circ \) tâm \(O\) biến các điểm \(A,B,C\) lần lượt thành các điểm\(D,E,F\)\( \Rightarrow \) các tam giác \(AOD,\,DOB,\,BOE,\,EOC,\,COF\) là các tam giác đều

\( \Rightarrow \)\(AD = DB = BE = EC = CF\)và \(\widehat {ADB} = \widehat {DBE} = \widehat {BEC} = \widehat {ECF} = \widehat {CFA} = \widehat {FAD} = 120^\circ \)

Do đó \(ADBECF\) là một lục giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phép quay ngược chiều 72o tâm O biến điểm A biến B thì các điểm \(B,C,D,E\) lần lượt biến thành các điểm \(C,D,E\)và A .

b) Ba phép quay tâm O giữ nguyên hình ngũ giác đều:

1. Phép quay ngược chiều 144o;

2. Phép quay ngược chiều 216o;

3. Phép quay thuận chiều 72o.

Bạn hãy tìm thêm những phép quay còn lại giữ nguyên hình ngũ giác đều.

Lời giải

a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.

Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].

b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP