Câu hỏi:

03/02/2026 12 Lưu

Cho ngũ giác đều \(ABCDE\). Gọi \(I\) là giao diểm của \(AD\)\(BE\). Chứng minh rằng

 a) \(DIBC\) là hình bình hành;

 b) \(D{I^2} = AI \cdot AD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có mỗi góc trong của ngũ giác đều có số đo là \(108^\circ \) hay \[\widehat {AED} = 108^\circ \];  Tam giác \[AED\]cân tại \[E\]từ đó \(\widehat {{A_1}} = \widehat {{D_1}} = 36^\circ \); Tương tự tính được \(\widehat {{B_1}} = \widehat {{E_1}} = 36^\circ  = \widehat {{D_1}}\)

Vậy \(\widehat {{I_1}} = \widehat {{E_1}} + \widehat {{A_1}} = 72^\circ \) (góc ngoài của tam giác \(EAI\)) và \({D_2} = \widehat {EDC} - \widehat {{D_1}} = 108^\circ  - 36^\circ  = 72^\circ \). Vậy \(\widehat {{D_2}} = \widehat {{I_1}}\) mà hai góc này ở vị trí đồng vị suy ra \[IB//DC\]. Chứng minh tương tự ta có \[DI//BC\] hay \(DIBC\) là hình bình hành.

b) Xét tam giác \(AIE\) và tam giác \(EAD\), ta có

   + Góc \(A\) chung;

   + \(\widehat {AEI} = \widehat {ADE}\).

\( \Rightarrow \Delta AIE\~\Delta AED(\;{\rm{g}} - {\rm{g}})\)suy ra \(\frac{{AI}}{{AE}} = \frac{{AE}}{{AD}}\) suy ra \(AI \cdot AD = A{E^2} \cdot B{C^2} = D{I^2}\)

                              Cho ngũ giác đều \(ABCDE\). Gọi \(I\) là giao diểm của \(AD\) và \(BE\). Chứng minh rằng   a)  \(DIBC\) là hình bình hành; (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phép quay ngược chiều 72o tâm O biến điểm A biến B thì các điểm \(B,C,D,E\) lần lượt biến thành các điểm \(C,D,E\)và A .

b) Ba phép quay tâm O giữ nguyên hình ngũ giác đều:

1. Phép quay ngược chiều 144o;

2. Phép quay ngược chiều 216o;

3. Phép quay thuận chiều 72o.

Bạn hãy tìm thêm những phép quay còn lại giữ nguyên hình ngũ giác đều.

Lời giải

a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.

Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].

b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP