Câu hỏi:

04/02/2026 6 Lưu

Một chiếc thùng chứa đầy nước có hình một khối lập phương. Đặt vào trong thùng đó một khối nón sao cho đỉnh khối nón trùng với tâm một mặt của khối lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích của lượng nước trào ra ngoài và lượng nước còn lại ở trong thùng.
Một chiếc thùng chứa đầy nước có hình một khối lập phương. Đặt vào trong thùng đó một khối nón sao cho đỉnh khối nón trùng với tâm một mặt của khối lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Coi khối lập phương có cạnh \[1\]. Thể tích khối lập phường là \[V = 1\].

Từ giả thiết ta suy ra khối nón có chiều cao \[h = 1\], bán kính đáy \[r = \frac{1}{2}\].

Thể tích lượng nước trào ra ngoài là thể tích \[{V_1}\] của khối nón.

Ta có: \[{V_1} = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi .\frac{1}{4}.1 = \frac{\pi }{{12}}\].

Thể tích lượng nước còn lại trong thùng là: \[{V_2} = V - {V_1} = 1 - \frac{\pi }{{12}} = \frac{{12 - \pi }}{{12}}\].

Do đó: \[\frac{{{V_1}}}{{{V_2}}} = \frac{\pi }{{12 - \pi }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác \(ABC\) vuông tại \(A\), cạnh \(AB = 6\), \(AC = 8\) và \(M\)là trung điểm của cạnh \(AC\). Tính thể tích của hình nón thu được do tam giác \(BMC\) quanh quanh \(AB\). (ảnh 1)

Khi tam giác \(BMC\) quanh quanh trục \(AB\)thì thể tích hình nón tạo thành là hiệu của thể tích hình nón có đường cao \(AB\), đường sinh \(BC\) và hình nón có đường cao \(AB\), đường sinh \(BM\).

Nên \(V = \frac{1}{3}AB.\pi .A{C^2} - \frac{1}{3}AB.\pi .A{M^2} = \frac{1}{4}AB.\pi .A{C^2} = 96\pi \).

Lời giải

Cho tam giác vuông \[H\] tại\(AB (ảnh 1)

a) Khi quay tam giác \[R = HC = 2\] xung quanh trục \(\Delta AHC\), ta thu được hình nón có bán kính đáy \(r = AC = a\), chiều cao \(h = AB = a\sqrt 3 \)và đường sinh là cạnh huyền \(l = BC\).

Xét tam giác \( = 2\sqrt 3 \) vuông tại \(V = \frac{1}{3}\pi {R^2}.AH\), theo pythagore, ta có:

\[\begin{array}{l}B{C^2} = A{C^2} + A{B^2} = 2{a^2}\\ \Rightarrow BC = 2a \Rightarrow l = 2a\end{array}\]

Đường sinh của hình nón \[2a\] (đvđd)

b) Thể tích hình nón là: \[V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi .{a^2}.a\sqrt 3  = \frac{{{a^3}\sqrt 3 \pi }}{3}\] (đvtt)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP