Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh tại trường X . Nhóm này có \(70\% \) học sinh là nam. Kết quả khảo sát cho thấy có \(30\% \) học sinh nam và \(15\% \) học sinh nữ biết chơi ít nhất một nhạc cụ. Chọn ngẫu nhiên một học sinh trong nhóm này. Tính xác suất để chọn được học sinh biết chơi ít nhất một nhạc cụ.
Quảng cáo
Trả lời:
Xét phép thử chọn ngẫu nhiên một học sinh trong nhóm.
Gọi \(A\) là biến cố "Chọn được một học sinh biết chơi ít nhất một nhạc cụ" và \(B,\bar B\) lần lượt là các biến cố "Chọn được một học sinh nam" và "Chọn được một học sinh nữ".
Theo đề bài: \(P(B) = 70\% = 0,7;P(\overline B ) = 1 - 0,7 = 0,3\);
\(P(A\mid B) = 30\% = 0,3;P(A\mid \bar B) = 15\% = 0,15.\)
Áp dụng công thức xác suất toàn phần, ta có:
\(P(A) = P(B) \cdot P(A\mid B) + P(\bar B) \cdot P(A\mid \bar B) = 0,7 \cdot 0,3 + 0,3 \cdot 0,15 = 0,255.\)
Vậy xác suất để chọn được một học sinh biết chơi nhạc cụ là \(0,255\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố “bóng đạt chuẩn sau khi qua kiểm tra chất lượng”
\(B\) là biến cố “sản phẩm đạt tiêu chuẩn”.
Theo bài ra ta có: \(P\left( B \right) = 0,8\); \(P\left( {\overline B } \right) = 1 - 0,8 = 0,2\)
Do tỉ lệ công nhận một bóng đèn đạt tiêu chuẩn là 0,9 nên \(P\left( {A|B} \right) = 0,9\).
Tỉ lệ loại bỏ một bóng hỏng là 0,95 nên \(P\left( {A|\overline B } \right) = 1 - 0,95 = 0,05\).
Theo công thức xác suất toàn phần ta có: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,8.0,9 + 0,2.0,05 = 0,73\).
Lời giải
a. Gọi \(A\) là biến cố “học sinh được chọn là học sinh giỏi”
và \(B\) là biến cố “học sinh được chọn là học sinh nữ”.
Theo bài ra ta có: \(P\left( B \right) = 0,45;\begin{array}{*{20}{c}}{}\end{array}P\left( {\overline B } \right) = 1 - 0,45 = 0,55\).
Do lớp học đó có tỉ lệ học sinh giỏi là nữ là 30%, học sinh giỏi là nam chiếm 40% nên:
\(P\left( {A|B} \right) = 0,3\) và \(P\left( {A|\overline B } \right) = 0,4\).
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,45.0,3 + 0,55.0,4 \simeq 0,36\).
b. Gọi \(C\) là biến cố “học sinh giỏi được chọn là học sinh nữ” thì \(C = B|A\), nên, theo công thức Bayes ta có: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,45.0,3}}{{0,355}} \simeq 0,38\).
Câu 3
B. \[0,5231\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Xác suất để lấy được bi xanh từ hộp thứ nhất là \[\frac{3}{8}\].
b) Xác suất để lấy được bi vàng từ hộp thứ nhất là \[\frac{5}{7}\].
c) Biết rằng lấy được bi màu xanh từ hộp thứ nhất. Xác suất để lấy được 2 viên bi khác màu từ hộp thứ hai là \[\frac{9}{{13}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.