Một công ty may có hai chi nhánh cùng sản xuất một loại áo, trong đó có \(56\% \)áo ở chi nhánh I và \(44\% \) áo ở chi nhánh II. Tại chi nhánh I có \(75\% \) áo chất lượng cao và tại chi nhánh II có \(68\% \) áo chất lượng cao ( kích thước và hình dáng bề ngoài của các áo là như nhau). Chọn ngẫu nhiên \(1\) áo . Xác suất chọn được áo chất lượng cao là (làm tròn đến chữ số thập phân thứ hai)
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố áo được chọn là áo chất lượng cao. \(B\) là biến cố áo được chọn ở chi nhánh \(I\) và \(\overline B \) là biến cố áo được chọn ở chi nhánh \(II\).
Từ giải thiết ta có \(P\left( B \right) = 0,56\), \(P\left( {\left. A \right|B} \right) = 0,75\), \(P\left( {\overline B } \right) = 0,44\), \(P\left( {\left. A \right|\overline B } \right) = 0,68\).
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A\left| B \right.} \right) + P\left( {\overline B } \right).P\left( {\left. A \right|\overline B } \right) = 0,56.0,75 + 0,44.0,68 = 0,7192 \approx 0,72\).
Vậy xác suất chọn được áo chất lượng cao là \(0,72\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[{K_1}\]: “Bi lấy ra từ hộp II là bi của hộp \[I\]”
\[{K_2}\]: “Bi lấy ra từ hộp \[II\] là bi của hộp \[II\]”
\[A\]: “Lấy được bi trắng”
a) Ta có : \[P\left( {{K_1}} \right)\, = \,\frac{{C_2^1}}{{C_{12}^1}}\, = \,\frac{1}{6}\]; \[P\left( {{K_2}} \right)\, = \,\frac{{C_{10}^1}}{{C_{12}^1}}\, = \,\frac{5}{6}\].
\[P\left( {A|{K_1}} \right)\, = \,\frac{{C_5^1}}{{C_{10}^1}}\, = \,\frac{1}{2}\]; \[P\left( {A|{K_2}} \right)\, = \,\frac{{C_6^1}}{{C_{10}^1}}\, = \,\frac{3}{5}\].
Áp dụng công thức xác suất toàn phần, ta có xác suất để lấy được bi trắng là:
\[P\left( A \right)\, = \,P\left( {{K_1}} \right).P\left( {A|{K_1}} \right)\, + P\left( {{K_2}} \right).P\left( {A|{K_2}} \right)\, = \,\frac{1}{6}.\frac{1}{2}\, + \,\frac{5}{6}.\frac{3}{5} = \frac{7}{{12}} \simeq \,0,58\].
b) Áp dụng công thức Bayes, xác suất để lấy được bi trắng của hộp \[I\] là:
\[P\left( {{K_1}|A} \right)\, = \,\frac{{P\left( {{K_1}} \right).P\left( {A|{K_1}} \right)}}{{P\left( A \right)\,}}\,\, = \,\frac{{\frac{1}{6}.\frac{1}{2}}}{{\frac{7}{{12}}}}\, = \,\frac{1}{7}\, \simeq \,0,14\].Lời giải
Gọi \(A\) là biến cố “Người đó bị nhiễm Virus”.
\(B\) là biến cố “Người đó cho kết quả dương tính”.
Xét nghiệm Covid – 19 cho kết quả dương tính với \(90\% \) các trường hợp thực sự nhiễm virus\(P\left( {B|A} \right) = 0,9\).
Xét nghiệm Covid – 19 cho kết quả âm tính với \(80\% \) các trường hợp thực sự không nhiễm virus, nên cho kết quả dương tính với \(20\% \) các trường hợp không thực sự nhiễm virus \(P\left( {B|\bar A} \right) = 0,2\)
\(P\left( A \right) = 0,01 \Rightarrow P\left( {\bar A} \right) = 0,99\)
Do đó xác suất để người đó cho kết quả dương tính là:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = 0,01.0,9 + 0,99.0,2 = 0,207\)
Xác suất để người nhiễm virus cho kết quả dương tính là:
\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,01.0,9}}{{0,207}} = \frac{1}{{23}}\)
Vậy \(a = 1,b = 23 \Rightarrow a + b = 24\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Xác suất để lấy được bi đánh số có màu vàng là \[0,6\].
b) Xác suất để lấy được bi không đánh số có màu đỏ là \[0,8\].
c) Xác suất để viên bi được lấy ra có đánh số là \[0,36\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(P(A) = P(A).P(A|B) + P(\overline A ).P(A|\overline B )\)
B. \(P(A) = P(B).P(A|B) + P(\overline B ).P(A|\overline B )\).
C. \(P(A) = P(A).P(\overline A |B) + P(\overline A ).P(A|\overline B )\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.