Có hai đội thi đấu môn bắn súng. Đội I có 8 vận động viên, đội II có 10 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,6 và 0,55. Chọn ngẫu nhiên một vận động viên.
Có hai đội thi đấu môn bắn súng. Đội I có 8 vận động viên, đội II có 10 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,6 và 0,55. Chọn ngẫu nhiên một vận động viên.
a) Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{5}{9}\)
b) Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(0,45\)
c) Xác suất để vận động viên này đạt huy chương vàng là \(\frac{{103}}{{180}}\)
Quảng cáo
Trả lời:
|
Câu |
Đáp án |
|
a) |
S |
|
b) |
Đ |
|
c) |
Đ |
|
d) |
Đ |
a) Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).
b) Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\)
c) Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.
Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\)
Theo công thức xác suất toàn phần ta có
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\)
d) Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố: “Lấy được đồng xu cân đối đồng chất” và \(B\) là biến cố: “Tung đồng xu ba lần đều xuất hiện mặt ngửa”. Khi đó ta cần tính \(P\left( {A|B} \right)\).
Ta có \(P\left( A \right) = \frac{1}{2}\), \(P\left( {\overline A } \right) = \frac{1}{2}\) và \(P\left( {B|A} \right) = {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\), \(P\left( {B|\overline A } \right) = {\left( {\frac{2}{3}} \right)^3} = \frac{8}{{27}}\).
Theo công thức Bayes và công thức xác suất toàn phần ta có
\(P\left( {A|B} \right) = \frac{{P\left( A \right)P\left( {B|A} \right)}}{{P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right)}} = \frac{{\frac{1}{2} \cdot \frac{1}{8}}}{{\frac{1}{2} \cdot \frac{1}{8} + \frac{1}{2} \cdot \frac{8}{{27}}}} \approx 0.3\).Lời giải
Gọi A là biến cố dự án gặp rủi ro trong kỳ đầu tư.
\[{H_i}{\rm{ }}\left( {i = 1,2,3} \right)\] lần lượt là các biến cố dự án thuộc loại ít rủi ro, rủi ro trung bình và rủi ro cao
\[P{\rm{ }}\left( {{H_1}} \right) = {\rm{ }}0,2;{\rm{ }}P{\rm{ }}\left( {{H_2}} \right) = 0,45;{\rm{ }}P{\rm{ }}\left( {{H_3}} \right) = 0,35\] .
\[P{\rm{ }}(A\;|{H_1}) = {\rm{ }}0,05;{\rm{ }}P{\rm{ }}\left( {A|{H_2}} \right) = {\rm{ }}0,2;{\rm{ }}P{\rm{ }}\left( {A|{H_2}} \right) = {\rm{ }}0,4\].
\[P{\rm{ }}\left( A \right) = {\rm{ }}P{\rm{ }}\left( {{H_1}} \right).{\rm{ }}P{\rm{ }}\left( {A|{H_1}} \right){\rm{ }} + {\rm{ }}P{\rm{ }}\left( {{H_2}} \right).{\rm{ }}P{\rm{ }}\left( {A|{H_2}} \right){\rm{ }} + {\rm{ }}P{\rm{ }}\left( {{H_3}} \right).{\rm{ }}P{\rm{ }}\left( {A|{H_3}} \right) = {\rm{ }}0,24\].

\[\;P{\rm{ }}\left( {{H_1}|A} \right) = \] \(\frac{{P{\rm{ }}\left( {{H_1}} \right).{\rm{ }}P{\rm{ }}\left( {A|{H_1}} \right)}}{{P(A)}} \approx \) \[0,04\]
\[\;P{\rm{ }}\left( {{H_2}|A} \right) = \]\(\frac{{P{\rm{ }}\left( {{H_2}} \right).{\rm{ }}P{\rm{ }}\left( {A|{H_2}} \right)}}{{P(A)}} \approx \) \[0,38\] .
\[\;P{\rm{ }}\left( {{H_3}|A} \right) = \]\(\frac{{P{\rm{ }}\left( {{H_3}} \right).{\rm{ }}P{\rm{ }}\left( {A|{H_3}} \right)}}{{P(A)}} \approx \) \[0,58\]
Vậy khả năng dự án gặp rủi ro là cao nhất là \[0,58\].Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Chọn ngẫu nhiên 1 xạ thủ bắn và xạ thủ đó bắn một viên đạn. Gọi A là biến cố “Viên đạn trúng đích”. B là biến cố “ Xạ thủ loại I bắn”. C là biến cố “ Xạ thủ loại II bắn”. Khi đó ta có xác suất để viên đạn trúng đích được tính theo công thức công thức:
\[P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( C \right).P\left( {A|\overline C } \right)\]
b) Chọn ngẫu nhiên một xạ thủ bắn và xạ thủ đó bắn một viên đạn. Xác suất để viên đạn đó trúng đích là \[0.74\].
c) Chọn ngẫu nhiên ra hai xạ thủ và cả hai xạ thủ đều bắn một viên đạn. Gọi E là biến cố “ Cả hai viên đạn đều bắn trúng đích” \[{E_i}\] là biến cố chọn được i xạ thủ loại I. Khi đó ta có công thức tính xác xuất để cả hai xạ thủ đều bắn trúng là
\[P\left( E \right) = P\left( {{E_o}} \right).P\left( {E|{E_o}} \right) + P\left( {{E_1}} \right).P\left( {E|\overline {{E_1}} } \right) + P\left( {{E_2}} \right).P\left( {E|\overline {{E_2}} } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) \(P\left( {B|A} \right) = 0,9\).
b) \(P\left( {\overline B \left| A \right.} \right) = 0,5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
