Câu hỏi:

11/02/2026 8 Lưu

Anh A mở một nhà hàng lẩu. Anh đã trang bị cho mỗi bàn ăn một nồi lẩu có dạng hai hình trụ đồng trụ. Bán kính đáy nồi (ngoài) \[R = 15\]cm, bán kính trụ giữa (trong) là \[r = 3,5\] cm, chiều cao long nồi là \[h = 10\] cm. Để khách hàng có trải nghiệm tốt nhất, anh A cần xác định chiều dài tối thiểu \[L\] của chiếc đũa sao cho dù đầu đũa có bị trượt vào vị trí nào trong nồi, phần đầu đũa thừa ra ngoài miệng nồi vẫn phải lớn hơn 5 cm. Tính\[L\](kết quả làm tròn đến hàng phần mười).

Anh A mở một nhà hàng lẩu. Anh đã trang bị cho mỗi bàn ăn một nồi lẩu có dạng hai hình trụ đồng trụ. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

35,8

Đáp án: \(35,8\).

Giả sử chiếc đũa bị tụt sâu nhất vào trong nồi, ta cần tìm độ lớn đoạn \[AB\]lớn nhất\[ \Leftrightarrow BC\]lớn nhất.

Anh A mở một nhà hàng lẩu. Anh đã trang bị cho mỗi bàn ăn một nồi lẩu có dạng hai hình trụ đồng trụ. (ảnh 2)

Khi đó: \[B{C_{\max }} = 2HC = 2\sqrt {I{C^2} - I{H^2}} = 2\sqrt {{{15}^2} - 3,{5^2}} = \sqrt {851} \].

\[ \Rightarrow A{B_{\max }} = \sqrt {B{C^2} + A{C^2}} = \sqrt {951} \].

Vậy chiều dài tối thiểu của chiếc đũa thỏa mãn yêu cầu đề bài là \[L = \sqrt {951} + 5 \approx 35,8\]cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ {\frac{\pi }{3} + k2\pi ;\frac{{2\pi }}{3} + k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).  
B. \(\left\{ {\frac{\pi }{6} + k\pi ;\frac{{5\pi }}{6} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).                              
C. \(\left\{ {\frac{\pi }{3} + k\pi ;\frac{{2\pi }}{3} + k\pi \left| {k \in \mathbb{Z}} \right.} \right\}\). 
D. \(\left\{ {\frac{\pi }{6} + k2\pi ;\frac{{5\pi }}{6} + k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\).

Lời giải

Chọn D

Phương trình \(\sin x = \frac{1}{2} = \sin \frac{\pi }{6}\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{x = \frac{{5\pi }}{6} + k2\pi }\end{array}} \right.,k \in \mathbb{Z}\)

Câu 2

a) [NB] \[\overrightarrow {AB} = \left( { - 4;5; - 1} \right),\,\,\overrightarrow {AC} = \left( {0; - 1; - 1} \right).\]
Đúng
Sai
b) [TH] Biết điểm \[D(a;b;c)\] sao cho tứ giác \[ABCD\] là hình bình hành, ta có \(a + b + c = 9\).
Đúng
Sai
c) [TH] \[\overrightarrow {AB} .\,\overrightarrow {AC} = - 10.\]
Đúng
Sai
d) [TH] Gọi \[\alpha \] là số đo góc \[A\] của tam giác \(ABC.\) Khi đó \[\cos \alpha = \frac{{\sqrt {21} }}{7}.\]
Đúng
Sai

Lời giải

a) \[\overrightarrow {AB} = ( - 4;5; - 1),\,\,\overrightarrow {AC} = (0; - 1;1).\] suy ra chọn Sai

b) Ta có \[\overrightarrow {AB} = \left( { - 4;5; - 1} \right),\,\,\overrightarrow {DC} = \left( {5 - a; - b;4 - c} \right)\]

                      Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC (ảnh 1)

Vậy \[a + b + c = 9\] suy ra chọn Đúng

c) Ta có \[\overrightarrow {AB} .\overrightarrow {AC} = ( - 4).0 + 5.( - 1) + ( - 1).1\,\, = - 6.\] suy ra chọn Sai

d) \[\cos \alpha = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - 6}}{{\sqrt {{{\left( { - 4} \right)}^2} + {5^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{0^2} + {{( - 1)}^2} + {1^2}} }} = \frac{{ - \sqrt {21} }}{7}.\] suy ra chọn Sai

Câu 3

a) [TH] Độ dài đường cao hình lăng trụ bằng \(\frac{{4a\sqrt 2 }}{3}\).
Đúng
Sai
b) [TH] Thể tích khối lăng trụ đã cho bằng \(4{a^3}\sqrt 2 \).
Đúng
Sai
c) [TH] Khoảng cách giữa hai đường thẳng \(BB'\)\(AC\) gấp ba lần khoảng cách từ \(H\) đến \(\left( {ACC'A'} \right)\).
Đúng
Sai
d) [VD] Khoảng cách giữa hai đường thẳng \(BB'\)\(AC\) bằng \(\frac{{2a\sqrt {34} }}{{17}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x = - 1\).                  
B. \(y = - 2\).              
C. \(x = 1\).                   
D. \(y = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({u_3} = 18\).          
B. \({u_3} = 54\).        
C. \({u_3} = - 18\).      
D. \({u_3} = - 54\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{{a^3}\sqrt 3 }}{3}\).                        
B. \(\frac{{{a^3}}}{{12}}\).                                       
C. \(\frac{{{a^3}\sqrt 3 }}{4}\).                      
D. \({a^3}\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) [NB] Tập xác định của hàm số là \(D = \left( {0; + \infty } \right)\).
Đúng
Sai
b) [TH] Đạo hàm \(f'\left( x \right) = 1 + \frac{1}{x}\).
Đúng
Sai
c) [TH] Phương trình \(f'\left( x \right) = 0\) có nghiệm duy nhất \(x = 1\).
Đúng
Sai
d) [VD,VDC] Giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {\frac{1}{3};2} \right]\) bằng \(\frac{1}{3} + \ln 3\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP