Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + bx + c}}{{x - 2}}\) có đạo hàm f'(x). Đồ thị của hàm số f'(x) như hình vẽ sau:
Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + bx + c}}{{x - 2}}\) có đạo hàm f'(x). Đồ thị của hàm số f'(x) như hình vẽ sau:

Quảng cáo
Trả lời:
a) Dễ thấy phương trình \(f'\left( x \right) = 0\)vcó hai nghiệm \(x = 1\) và \(x = 3\).
b) Do \(D = \mathbb{R}\backslash \left\{ 2 \right\}\) nên hàm số không thể nghịch biến trên \(\left( {1;3} \right)\).
c) Từ đồ thị của hàm số \(f'\left( x \right)\), có BBT của hàm số \(f\left( x \right)\) như sau:

Do đó, hàm số \(f\left( x \right)\) đạt cực đại tại \(x = 1\) và đạt cực tiểu tại \(x = 3\).
d) Có \(f'\left( x \right) = \frac{{{x^2} - 4x - \left( {2b + c} \right)}}{{{{\left( {x - 2} \right)}^2}}}\) và \(\left\{ \begin{array}{l}f\left( 0 \right) = 1\\f'\left( 1 \right) = f'\left( 3 \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}c = - 2\\2b + c = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = - 2\\b = - \frac{1}{2}\end{array} \right.\).
Khi đó \(f\left( x \right) = \frac{{{x^2} - \frac{1}{2}x - 2}}{{x - 2}}\) và dễ thấy \(\mathop {\max }\limits_{\left[ {3;4} \right]} f\left( x \right) = f\left( 4 \right) = 6\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 8,64.
Ta có: \(\overrightarrow {DA} = \left( { - 3;0;0} \right)\), \(\overrightarrow {DB} = \left( {0; - 4;0} \right)\) và \(\overrightarrow {DC} = \left( {0;0; - 5} \right)\).
Dễ thấy: \[\left\{ \begin{array}{l}\overrightarrow {DA} .\overrightarrow {DB} = 0 \Rightarrow DA \bot DB\\\overrightarrow {DB} .\overrightarrow {DC} = 0 \Rightarrow DB \bot DC\\\overrightarrow {DC} .\overrightarrow {DA} = 0 \Rightarrow DC \bot DA\end{array} \right.\] nên các điểm \(A\left( {0;4;5} \right)\), \(B\left( {3;0;5} \right)\), \(C\left( {3;4;0} \right)\), \(D\left( {3;4;5} \right)\) là các đỉnh của một hình hộp chữ nhật với \(DA = 3\), \(DB = 4\) và \(DC = 5\).
Gọi \(S = d\left( {A,MD} \right) + d\left( {B,MD} \right) + d\left( {C,MD} \right)\).
Ta có \(d\left( {C,MD} \right) = DC = 5\) nên \(S\) lớn nhất khi \(d\left( {A,MD} \right) + d\left( {B,MD} \right)\) lớn nhất.

Xét \(\Delta DAB\) trong mặt phẳng \(\left( {DAB} \right)\): \(d\left( {A,MD} \right) + d\left( {B,MD} \right) \le AM + BM = AB\).
Dấu bằng xảy ra khi \(M\) là hình chiếu của \(D\) lên \(AB\).

Do \[DM \bot AB \Rightarrow \overrightarrow {DM} .\overrightarrow {AB} = 0 \Rightarrow \left( {3t - 3} \right) \times 3 - 4t \times \left( { - 4} \right) = 0 \Leftrightarrow t = \frac{9}{{25}} \Rightarrow M\left( {\frac{{27}}{{25}};\frac{{64}}{{25}};5} \right)\].
Vậy \[a + b + c = \frac{{27}}{{25}} + \frac{{64}}{{25}} + 5 = 8,64\].
Câu 2
Lời giải
Chọn A
Ta có \({\log _2}\left( {x + 1} \right) = 3 \Leftrightarrow x + 1 = 8 \Leftrightarrow x = 7\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
