Một cửa hàng cần nhập 2500 chiếc máy tính bảng trong 1 năm. Cửa hàng chọn chia thành nhiều đợt giao hàng, mỗi đợt giao \(x\) chiếc \(\left( {1 \le x \le 2500,\,x \in {\mathbb{N}^*}} \right)\).

Công ty vận chuyển tính phí cho mỗi đợt như sau:
+ Phí điều xe cố định: 20 đô la/ đợt.
+ Phí an ninh- bảo hiểm cho lô hàng lớn: \(0,002{x^2}\) đô la/ đợt.
Hỏi mỗi đợt công ty nên vận chuyển bao nhiêu máy tính bảng để tổng chi phí vận chuyển trong năm là nhỏ nhất?
Quảng cáo
Trả lời:
Đáp án:
Đáp án: 100.
Chi phí vận chuyển cho mỗi đợt là \(0,002{x^2} + 20\) đô la.
Số lần vận chuyển trong năm là \(\frac{{2500}}{x}\) lần.
Tổng chi phí vận chuyển trong năm là: \(f\left( x \right) = \left( {0,002{x^2} + 20} \right).\frac{{2500}}{x} = 5x + \frac{{50000}}{x}\)
Ta có: \(f'\left( x \right) = 5 - \frac{{50000}}{{{x^2}}} = 0 \Rightarrow x = 100\).

Từ bảng biến thiên, ta thấy mỗi đợt công ti nên vận chuyển 100 cái máy tính thì tổng chi phí vận chuyển trong năm là nhỏ nhất
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gán hệ trục tọa độ như hình vẽ. Ta dễ dàng tìm được \((P):y = - \frac{1}{{40}}{x^2} + 10\).
Diện tích hồ bơi là: \({S_b} = 2\int\limits_0^{20} {\left( { - \frac{1}{{40}}{x^2} + 10} \right)} = \frac{{800}}{3}\).
Gọi \(\alpha \) là góc tạo bởi tia \(Ot\) và trục \(Ox\).
Lúc đó: \[M(OM\cos \alpha ;OM{\rm{ sin}}\alpha {\rm{)}}\]. Vì \[M \in \left( P \right)\]\( \Rightarrow OM{\rm{ sin}}\alpha = \frac{{ - 1}}{{40}}{\left( {OM{\rm{ cos}}\alpha } \right)^2} + 10\).
\[ \Rightarrow O{M^2}{\rm{ }}{\left( {{\rm{cos}}\alpha } \right)^2} + 40OM{\rm{ sin}}\alpha - 400 = 0 \Leftrightarrow \left[ \begin{array}{l}OM = \frac{{ - 20\sin \alpha - 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\\OM = \frac{{ - 20\sin \alpha + 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\end{array} \right.\].
Ta chọn \(OM = \frac{{20 - 20\sin \alpha }}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}} = \frac{{20}}{{1 + \sin \alpha }}\).
TH1: \(\alpha \in \left[ {0,\arctan 2} \right] \Rightarrow ON = \frac{{20}}{{{\rm{cos}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}\).
TH2: \(\alpha \in \left[ {\arctan 2,\frac{\pi }{2}} \right] \Rightarrow ON = \frac{{40}}{{{\rm{sin}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}\).
\[{S_{(L)}} = 2\left[ {\frac{1}{2}\int\limits_0^{\arctan 2} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}} \right)}^2}} {\rm{d}}\alpha + \frac{1}{2}\int\limits_{\arctan 2}^{\frac{\pi }{2}} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}} \right)}^2}} {\rm{d}}\alpha } \right] = 756,3({m^2})\].
Tổng chi phí:
\(5.{S_b} + 2.\left( {{S_L} - {S_b}} \right) + 0,1\left( {{S_V} - {S_L}} \right) = 5.\frac{{800}}{3} + 2.\left( {756,3 - \frac{{800}}{3}} \right) + 0,1\left( {1600 - 756,3} \right) = 2396,97 \approx 2,4\)tỉ.
Lưu ý: Ở trên ta sử dụng công thức của bổ đề sau:
Cho một đương cong ( \(L\) ) có phương trình trong hệ tọa độ cực là \(r = r\left( \theta \right)\), với \(\alpha \le \theta \le \beta \). Tính diện tích \(S\) của hình phẳng giới hạn bởi đường cong \(\left( L \right)\) và hai tia \(\theta = \alpha ,\theta = \beta \).
\(S = \int_\alpha ^\beta {\frac{1}{2}} {[r(\theta )]^2}d\theta \).
Câu 2
Lời giải
a) Đúng
Tại thời điểm \(t = 0\), vận tốc của con lắc đơn là \(v\left( 0 \right) = 2\sin \left( {\frac{\pi }{6}} \right) = 1\). Đáp án a Đúng.
b) Sai
Đạo hàm của \(v\left( t \right)\)là \(v'\left( t \right) = 4\cos \left( {2t + \frac{\pi }{6}} \right)\). Đáp án b Sai.
c) Đúng.
Phương trình \(v'\left( t \right) = 0 \Leftrightarrow 4\cos \left( {2t + \frac{\pi }{6}} \right) = 0 \Leftrightarrow t = \frac{\pi }{6} + \frac{{k\pi }}{2} \Rightarrow \) phương trình có nghiệm duy nhất trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\) là \(\frac{\pi }{6}\). Đáp án c Đúng.
d) Đúng.
Trong khoảng thời gian từ 0 đến 10 giây, con lắc đơn có 4 lần đạt vận tốc lớn nhất.
Ta có: \(v\left( t \right) = 2\sin \left( {2t + \frac{\pi }{6}} \right) \Rightarrow - 2 \le v\left( t \right) \le 2\) với mọi t
Suy ra: \(v{\left( t \right)_{\max }} = 2 \Leftrightarrow \sin \left( {2t + \frac{\pi }{6}} \right) = 1 \Leftrightarrow t = \frac{\pi }{6} + k\pi \)
Do \(0 \le t \le 10 \Rightarrow t \in \left\{ {\frac{\pi }{6};\frac{{7\pi }}{6};\frac{{11\pi }}{6};\frac{{17\pi }}{6}} \right\}\). Vậy có 4 giá trị. Đáp án d Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





