Câu hỏi:

11/02/2026 7 Lưu

Trên một ô lưới như hình, hình chữ chữ nhật \(AB\) gồm 9 cột và 5 hàng ô vuông. Một bé cún xuất phát từ điểm \(A\) và chạy đến điểm \(B\). Mỗi bước, bé cún chỉ được chạy sang phải hoặc xuống dưới đúng 1 ô (đi theo các cạnh của ô vuông), vì vậy bé cún luôn đi theo đường ngắn nhất. Trong hình vuông có phần tô đậm là những bãi bùn. Bé cún không được chạy vào miền trong của các vùng tô đậm, nhưng vẫn được phép chạy trên đường biên của chúng. Hỏi bé cún có bao nhiêu cách chạy từ \(A\) đến \(B\)?

Trên một ô lưới như hình, hình chữ chữ nhật \(AB\) gồm 9 cột và 5 hàng ô vuông. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1127

Đáp án: 1127.

Trên một ô lưới như hình, hình chữ chữ nhật \(AB\) gồm 9 cột và 5 hàng ô vuông. (ảnh 2)

Vì đường đi chỉ sang phải có 9 cách, và chỉ đi xuống có 5 cách, nên số cách đi từ \(A\) đến \(B\) là

\(C_{14}^5 = 2002\)cách.

Số cách đi sang phải từ \(A\) đến \(E\) là 4 cách và số cách đi xuống từ \(A\) đến \(E\) là 3 cách nên số cách đi từ \(A\) đến \(E\) là \(C_7^3 = 35\) cách.

Số cách đi sang phải từ \(E\) đến \(B\) là 5 cách và số cách đi xuống từ \(E\) đến \(B\) là 2 cách nên số cách đi từ \(E\) đến \(B\) là \(C_7^5 = 21\) cách.

\( \Rightarrow \)số cách đi từ \(A\) đến \(E\) rồi đến \(B\) là \(35.21 = 735\).

Số cách đi sang phải từ \(A\) đến \(M\) là 6 cách và sô cách đi xuống từ \(A\) đến \(M\) là 1 cách nên số cách đi từ \(A\) đến \(M\) là \(C_7^1 = 7\) cách.

Đi từ \(M\) đi xuống \(N\) có 1 cách.

Số cách đi sang phải từ \(N\) đến \(B\) là 3 cách và sô cách đi xuống từ \(N\) đến \(B\) là 3 cách nên số cách đi từ \(N\) đến \(B\) là \(C_6^3 = 20\) cách.

\( \Rightarrow \)số cách đi từ \(A\) đến \(M\) rồi \(N\) rồi đến \(B\) là \(7.1.20 = 140\).

\( \Rightarrow \)Số cách đi từ \(A\) đến \(B\) của bé cún là \(2002 - 735 - 140 = 1127\) cách.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 100.

Chi phí vận chuyển cho mỗi đợt là \(0,002{x^2} + 20\) đô la.

Số lần vận chuyển trong năm là \(\frac{{2500}}{x}\) lần.

Tổng chi phí vận chuyển trong năm là: \(f\left( x \right) = \left( {0,002{x^2} + 20} \right).\frac{{2500}}{x} = 5x + \frac{{50000}}{x}\)

Ta có: \(f'\left( x \right) = 5 - \frac{{50000}}{{{x^2}}} = 0 \Rightarrow x = 100\).

Một cửa hàng cần nhập 2500 chiếc máy tính bảng trong 1 năm. Cửa hàng chọn chia thành nhiều đợt giao hàng, mỗi đợt giao \(x\) chiếc \(\left( {1 \le x \le 2500,\,x \in {\mathbb{N}^*}} \right)\). (ảnh 2)

Từ bảng biến thiên, ta thấy mỗi đợt công ti nên vận chuyển 100 cái máy tính thì tổng chi phí vận chuyển trong năm là nhỏ nhất

Lời giải

Công tử Bạc Liêu có một mảnh đất hình vuông ở một khu đô thị sầm uất, hình vuông có cạnh (ảnh 2)

Gán hệ trục tọa độ như hình vẽ. Ta dễ dàng tìm được \((P):y = - \frac{1}{{40}}{x^2} + 10\).

Diện tích hồ bơi là: \({S_b} = 2\int\limits_0^{20} {\left( { - \frac{1}{{40}}{x^2} + 10} \right)} = \frac{{800}}{3}\).

Gọi \(\alpha \) là góc tạo bởi tia \(Ot\) trục \(Ox\).

Lúc đó: \[M(OM\cos \alpha ;OM{\rm{ sin}}\alpha {\rm{)}}\]. Vì \[M \in \left( P \right)\]\( \Rightarrow OM{\rm{ sin}}\alpha = \frac{{ - 1}}{{40}}{\left( {OM{\rm{ cos}}\alpha } \right)^2} + 10\).

\[ \Rightarrow O{M^2}{\rm{ }}{\left( {{\rm{cos}}\alpha } \right)^2} + 40OM{\rm{ sin}}\alpha - 400 = 0 \Leftrightarrow \left[ \begin{array}{l}OM = \frac{{ - 20\sin \alpha - 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\\OM = \frac{{ - 20\sin \alpha + 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\end{array} \right.\].

Ta chọn \(OM = \frac{{20 - 20\sin \alpha }}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}} = \frac{{20}}{{1 + \sin \alpha }}\).

TH1: \(\alpha \in \left[ {0,\arctan 2} \right] \Rightarrow ON = \frac{{20}}{{{\rm{cos}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}\).

TH2: \(\alpha \in \left[ {\arctan 2,\frac{\pi }{2}} \right] \Rightarrow ON = \frac{{40}}{{{\rm{sin}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}\).

\[{S_{(L)}} = 2\left[ {\frac{1}{2}\int\limits_0^{\arctan 2} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}} \right)}^2}} {\rm{d}}\alpha + \frac{1}{2}\int\limits_{\arctan 2}^{\frac{\pi }{2}} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}} \right)}^2}} {\rm{d}}\alpha } \right] = 756,3({m^2})\].

Tổng chi phí:

\(5.{S_b} + 2.\left( {{S_L} - {S_b}} \right) + 0,1\left( {{S_V} - {S_L}} \right) = 5.\frac{{800}}{3} + 2.\left( {756,3 - \frac{{800}}{3}} \right) + 0,1\left( {1600 - 756,3} \right) = 2396,97 \approx 2,4\)tỉ.

Lưu ý: Ở trên ta sử dụng công thức của bổ đề sau:

Cho một đương cong ( \(L\) ) có phương trình trong hệ tọa độ cực là \(r = r\left( \theta \right)\), với \(\alpha \le \theta \le \beta \). Tính diện tích \(S\) của hình phẳng giới hạn bởi đường cong \(\left( L \right)\) và hai tia \(\theta = \alpha ,\theta = \beta \).

\(S = \int_\alpha ^\beta {\frac{1}{2}} {[r(\theta )]^2}d\theta \).

Câu 3

a) [NB] Tại thời điểm \(t = 0\), vận tốc của con lắc đơn là \(v\left( 0 \right) = 1\).
Đúng
Sai
b) [TH] Đạo hàm của \(v\left( t \right)\)\(v'\left( t \right) = - 4\cos \left( {2t + \frac{\pi }{6}} \right)\)
Đúng
Sai
c) [TH] Phương trình \(v'\left( t \right) = 0\) có nghiệm duy nhất trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\)\(\frac{\pi }{6}\)
Đúng
Sai
d) [VD] Trong khoảng thời gian từ 0 đến 10 giây, con lắc đơn có 4 lần đạt vận tốc lớn nhất.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) [NB] Xác suất lấy được 2 quả bóng đỏ từ hộp A để bỏ sang hộp B là \(\frac{2}{7}\).
Đúng
Sai
b) [TH] Sau khi bỏ 2 quả bóng từ hộp A sang, hộp B có tất cả 9 quả bóng.
Đúng
Sai
c) [TH] Xác suất để 2 quả bóng lấy ra từ hộp B là 2 quả bóng đỏ là \(\frac{{25}}{{196}}\).
Đúng
Sai
d) [VD, VDC] Biết rằng 2 quả bóng lấy ra từ hộp B là 2 quả bóng đỏ. Xác suất để 2 quả bóng lấy từ hộp A (chuyển sang B) cũng là 2 quả bóng đỏ là \(\frac{{12}}{{25}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left[ {2;4} \right)\].                               
B. \[\left[ {4;6} \right)\].                           
C. \[\left[ {6;8} \right)\].                         
D. \[\left[ {8;10} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP