Trên một ô lưới như hình, hình chữ chữ nhật \(AB\) gồm 9 cột và 5 hàng ô vuông. Một bé cún xuất phát từ điểm \(A\) và chạy đến điểm \(B\). Mỗi bước, bé cún chỉ được chạy sang phải hoặc xuống dưới đúng 1 ô (đi theo các cạnh của ô vuông), vì vậy bé cún luôn đi theo đường ngắn nhất. Trong hình vuông có phần tô đậm là những bãi bùn. Bé cún không được chạy vào miền trong của các vùng tô đậm, nhưng vẫn được phép chạy trên đường biên của chúng. Hỏi bé cún có bao nhiêu cách chạy từ \(A\) đến \(B\)?

Quảng cáo
Trả lời:
Đáp án:
Đáp án: 1127.

Vì đường đi chỉ sang phải có 9 cách, và chỉ đi xuống có 5 cách, nên số cách đi từ \(A\) đến \(B\) là
\(C_{14}^5 = 2002\)cách.
Số cách đi sang phải từ \(A\) đến \(E\) là 4 cách và số cách đi xuống từ \(A\) đến \(E\) là 3 cách nên số cách đi từ \(A\) đến \(E\) là \(C_7^3 = 35\) cách.
Số cách đi sang phải từ \(E\) đến \(B\) là 5 cách và số cách đi xuống từ \(E\) đến \(B\) là 2 cách nên số cách đi từ \(E\) đến \(B\) là \(C_7^5 = 21\) cách.
\( \Rightarrow \)số cách đi từ \(A\) đến \(E\) rồi đến \(B\) là \(35.21 = 735\).
Số cách đi sang phải từ \(A\) đến \(M\) là 6 cách và sô cách đi xuống từ \(A\) đến \(M\) là 1 cách nên số cách đi từ \(A\) đến \(M\) là \(C_7^1 = 7\) cách.
Đi từ \(M\) đi xuống \(N\) có 1 cách.
Số cách đi sang phải từ \(N\) đến \(B\) là 3 cách và sô cách đi xuống từ \(N\) đến \(B\) là 3 cách nên số cách đi từ \(N\) đến \(B\) là \(C_6^3 = 20\) cách.
\( \Rightarrow \)số cách đi từ \(A\) đến \(M\) rồi \(N\) rồi đến \(B\) là \(7.1.20 = 140\).
\( \Rightarrow \)Số cách đi từ \(A\) đến \(B\) của bé cún là \(2002 - 735 - 140 = 1127\) cách.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 100.
Chi phí vận chuyển cho mỗi đợt là \(0,002{x^2} + 20\) đô la.
Số lần vận chuyển trong năm là \(\frac{{2500}}{x}\) lần.
Tổng chi phí vận chuyển trong năm là: \(f\left( x \right) = \left( {0,002{x^2} + 20} \right).\frac{{2500}}{x} = 5x + \frac{{50000}}{x}\)
Ta có: \(f'\left( x \right) = 5 - \frac{{50000}}{{{x^2}}} = 0 \Rightarrow x = 100\).

Từ bảng biến thiên, ta thấy mỗi đợt công ti nên vận chuyển 100 cái máy tính thì tổng chi phí vận chuyển trong năm là nhỏ nhất
Lời giải

Gán hệ trục tọa độ như hình vẽ. Ta dễ dàng tìm được \((P):y = - \frac{1}{{40}}{x^2} + 10\).
Diện tích hồ bơi là: \({S_b} = 2\int\limits_0^{20} {\left( { - \frac{1}{{40}}{x^2} + 10} \right)} = \frac{{800}}{3}\).
Gọi \(\alpha \) là góc tạo bởi tia \(Ot\) và trục \(Ox\).
Lúc đó: \[M(OM\cos \alpha ;OM{\rm{ sin}}\alpha {\rm{)}}\]. Vì \[M \in \left( P \right)\]\( \Rightarrow OM{\rm{ sin}}\alpha = \frac{{ - 1}}{{40}}{\left( {OM{\rm{ cos}}\alpha } \right)^2} + 10\).
\[ \Rightarrow O{M^2}{\rm{ }}{\left( {{\rm{cos}}\alpha } \right)^2} + 40OM{\rm{ sin}}\alpha - 400 = 0 \Leftrightarrow \left[ \begin{array}{l}OM = \frac{{ - 20\sin \alpha - 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\\OM = \frac{{ - 20\sin \alpha + 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\end{array} \right.\].
Ta chọn \(OM = \frac{{20 - 20\sin \alpha }}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}} = \frac{{20}}{{1 + \sin \alpha }}\).
TH1: \(\alpha \in \left[ {0,\arctan 2} \right] \Rightarrow ON = \frac{{20}}{{{\rm{cos}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}\).
TH2: \(\alpha \in \left[ {\arctan 2,\frac{\pi }{2}} \right] \Rightarrow ON = \frac{{40}}{{{\rm{sin}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}\).
\[{S_{(L)}} = 2\left[ {\frac{1}{2}\int\limits_0^{\arctan 2} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}} \right)}^2}} {\rm{d}}\alpha + \frac{1}{2}\int\limits_{\arctan 2}^{\frac{\pi }{2}} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}} \right)}^2}} {\rm{d}}\alpha } \right] = 756,3({m^2})\].
Tổng chi phí:
\(5.{S_b} + 2.\left( {{S_L} - {S_b}} \right) + 0,1\left( {{S_V} - {S_L}} \right) = 5.\frac{{800}}{3} + 2.\left( {756,3 - \frac{{800}}{3}} \right) + 0,1\left( {1600 - 756,3} \right) = 2396,97 \approx 2,4\)tỉ.
Lưu ý: Ở trên ta sử dụng công thức của bổ đề sau:
Cho một đương cong ( \(L\) ) có phương trình trong hệ tọa độ cực là \(r = r\left( \theta \right)\), với \(\alpha \le \theta \le \beta \). Tính diện tích \(S\) của hình phẳng giới hạn bởi đường cong \(\left( L \right)\) và hai tia \(\theta = \alpha ,\theta = \beta \).
\(S = \int_\alpha ^\beta {\frac{1}{2}} {[r(\theta )]^2}d\theta \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





