Trên hệ trục tọa độ \(Oxyz\) (đơn vị độ dài: m), một người lái mô tô xuất phát từ vị trí \(A(0;0;0)\) đến \(B(0;600;0)\) trong 6 phút. Từ \(B\), người đó cho xe đổi hướng để tiến thẳng đến \(C(1500;600;0)\) với tốc độ không đổi và bằng đúng tốc độ khi đi từ \(A\) đến \(B\).
Hỏi ở phút thứ 8 kể từ khi xe đổi hướng, tốc độ thay đổi khoảng cách của xe mô tô đối với vị trí xuất phát \(A\) là bao nhiêu m/phút?

Quảng cáo
Trả lời:
Đáp án:
Đáp án: 80.
Ta có: \(A = (0;0;0)\) và \(B = (0;600;0)\).
Độ dài quãng đường \(AB\) là \(AB = \sqrt {{{(0 - 0)}^2} + {{(600 - 0)}^2} + {{(0 - 0)}^2}} = \sqrt {{0^2} + {{600}^2} + {0^2}} = 600\) (m).
Thời gian đi từ \(A\) đến \(B\) là 6 phút.
Tốc độ của xe mô tô khi đi từ \(A\) đến \(B\) là: \(v = \frac{{AB}}{6} = \frac{{600}}{6} = 100\) (m/phút).
Sau khi đổi hướng tại \(B\), xe đi từ \(B(0;600;0)\) đến \(C(1500;600;0)\) với tốc độ không đổi \(v = 100\) m/phút.
Giả sử tại thời điểm \(t\) (phút) kể từ khi đổi hướng tại \(B\), xe đang ở vị trí \(M(x;y;z)\).
Vecto chỉ phương của đoạn \(BC\) là: \({\vec u_{BC}} = \frac{{\overrightarrow {BC} }}{{|\overrightarrow {BC} |}} = \frac{{(1500 - 0;600 - 600;0 - 0)}}{{\sqrt {{{1500}^2} + {0^2} + {0^2}} }} = \frac{{(1500;0;0)}}{{1500}} = (1;0;0)\).
Vị trí của xe tại thời điểm \(t\) là: \(M(t) = B + v \cdot t \cdot {\vec u_{BC}}\)
\(M(t) = (0;600;0) + 100 \cdot t \cdot (1;0;0)\)
\(M(t) = (0 + 100t;600 + 0;0 + 0)\)
\(M(t) = (100t;600;0)\).
Khoảng cách từ xe mô tô đến vị trí xuất phát \(A(0;0;0)\) tại thời điểm \(t\) là \(D(t)\):
\(D(t) = |\overrightarrow {AM(t)} | = \sqrt {{{(100t - 0)}^2} + {{(600 - 0)}^2} + {{(0 - 0)}^2}} \)\( = \sqrt {{{(100t)}^2} + {{600}^2}} \)\( = 100\sqrt {{t^2} + 36} \).
Tốc độ thay đổi khoảng cách của xe mô tô đối với vị trí xuất phát \(A\) chính là đạo hàm của \(D\left( t \right)\) theo \(t\):
\(D'\left( t \right) = {\left( {100\sqrt {{t^2} + 36} } \right)^\prime }\)\( = 100 \cdot \frac{1}{{2\sqrt {{t^2} + 36} }} \cdot (2t)\)\( = \frac{{100t}}{{\sqrt {{t^2} + 36} }}\).
Tại phút thứ 8 kể từ khi xe đổi hướng, tức là \(t = 8\) phút.
Thay \(t = 8\) vào biểu thức \(D'\left( t \right)\) ta được:
\(D'\left( 8 \right) = \frac{{100 \cdot 8}}{{\sqrt {{8^2} + 36} }}\)\( = \frac{{800}}{{\sqrt {64 + 36} }}\)\( = \frac{{800}}{{\sqrt {100} }}\)\( = \frac{{800}}{{10}}\)\( = 80\) (m/phút).
Vậy, ở phút thứ 8 kể từ khi xe đổi hướng, tốc độ thay đổi khoảng cách của xe mô tô đối với vị trí xuất phát \(A\) là 80 m/phút.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 100.
Chi phí vận chuyển cho mỗi đợt là \(0,002{x^2} + 20\) đô la.
Số lần vận chuyển trong năm là \(\frac{{2500}}{x}\) lần.
Tổng chi phí vận chuyển trong năm là: \(f\left( x \right) = \left( {0,002{x^2} + 20} \right).\frac{{2500}}{x} = 5x + \frac{{50000}}{x}\)
Ta có: \(f'\left( x \right) = 5 - \frac{{50000}}{{{x^2}}} = 0 \Rightarrow x = 100\).

Từ bảng biến thiên, ta thấy mỗi đợt công ti nên vận chuyển 100 cái máy tính thì tổng chi phí vận chuyển trong năm là nhỏ nhất
Lời giải

Gán hệ trục tọa độ như hình vẽ. Ta dễ dàng tìm được \((P):y = - \frac{1}{{40}}{x^2} + 10\).
Diện tích hồ bơi là: \({S_b} = 2\int\limits_0^{20} {\left( { - \frac{1}{{40}}{x^2} + 10} \right)} = \frac{{800}}{3}\).
Gọi \(\alpha \) là góc tạo bởi tia \(Ot\) và trục \(Ox\).
Lúc đó: \[M(OM\cos \alpha ;OM{\rm{ sin}}\alpha {\rm{)}}\]. Vì \[M \in \left( P \right)\]\( \Rightarrow OM{\rm{ sin}}\alpha = \frac{{ - 1}}{{40}}{\left( {OM{\rm{ cos}}\alpha } \right)^2} + 10\).
\[ \Rightarrow O{M^2}{\rm{ }}{\left( {{\rm{cos}}\alpha } \right)^2} + 40OM{\rm{ sin}}\alpha - 400 = 0 \Leftrightarrow \left[ \begin{array}{l}OM = \frac{{ - 20\sin \alpha - 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\\OM = \frac{{ - 20\sin \alpha + 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\end{array} \right.\].
Ta chọn \(OM = \frac{{20 - 20\sin \alpha }}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}} = \frac{{20}}{{1 + \sin \alpha }}\).
TH1: \(\alpha \in \left[ {0,\arctan 2} \right] \Rightarrow ON = \frac{{20}}{{{\rm{cos}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}\).
TH2: \(\alpha \in \left[ {\arctan 2,\frac{\pi }{2}} \right] \Rightarrow ON = \frac{{40}}{{{\rm{sin}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}\).
\[{S_{(L)}} = 2\left[ {\frac{1}{2}\int\limits_0^{\arctan 2} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}} \right)}^2}} {\rm{d}}\alpha + \frac{1}{2}\int\limits_{\arctan 2}^{\frac{\pi }{2}} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}} \right)}^2}} {\rm{d}}\alpha } \right] = 756,3({m^2})\].
Tổng chi phí:
\(5.{S_b} + 2.\left( {{S_L} - {S_b}} \right) + 0,1\left( {{S_V} - {S_L}} \right) = 5.\frac{{800}}{3} + 2.\left( {756,3 - \frac{{800}}{3}} \right) + 0,1\left( {1600 - 756,3} \right) = 2396,97 \approx 2,4\)tỉ.
Lưu ý: Ở trên ta sử dụng công thức của bổ đề sau:
Cho một đương cong ( \(L\) ) có phương trình trong hệ tọa độ cực là \(r = r\left( \theta \right)\), với \(\alpha \le \theta \le \beta \). Tính diện tích \(S\) của hình phẳng giới hạn bởi đường cong \(\left( L \right)\) và hai tia \(\theta = \alpha ,\theta = \beta \).
\(S = \int_\alpha ^\beta {\frac{1}{2}} {[r(\theta )]^2}d\theta \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






