Câu hỏi:

11/02/2026 7 Lưu

Trên hệ trục tọa độ \(Oxyz\) (đơn vị độ dài: m), một người lái mô tô xuất phát từ vị trí \(A(0;0;0)\) đến \(B(0;600;0)\) trong 6 phút. Từ \(B\), người đó cho xe đổi hướng để tiến thẳng đến \(C(1500;600;0)\) với tốc độ không đổi và bằng đúng tốc độ khi đi từ \(A\) đến \(B\).
Hỏi ở phút thứ 8 kể từ khi xe đổi hướng, tốc độ thay đổi khoảng cách của xe mô tô đối với vị trí xuất phát \(A\) là bao nhiêu m/phút?

Trên hệ trục tọa độ Oxyz (đơn vị độ dài: m), một người lái mô tô xuất phát từ vị trí (ảnh 1)

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

80

Đáp án: 80.

Ta có: \(A = (0;0;0)\)\(B = (0;600;0)\).
Độ dài quãng đường
\(AB\)\(AB = \sqrt {{{(0 - 0)}^2} + {{(600 - 0)}^2} + {{(0 - 0)}^2}} = \sqrt {{0^2} + {{600}^2} + {0^2}} = 600\) (m).
Thời gian đi từ
\(A\) đến \(B\) là 6 phút.
Tốc độ của xe mô tô khi đi từ
\(A\) đến \(B\) là: \(v = \frac{{AB}}{6} = \frac{{600}}{6} = 100\) (m/phút).
Sau khi đổi hướng tại
\(B\), xe đi từ \(B(0;600;0)\) đến \(C(1500;600;0)\) với tốc độ không đổi \(v = 100\) m/phút.
Giả sử tại thời điểm
\(t\) (phút) kể từ khi đổi hướng tại \(B\), xe đang ở vị trí \(M(x;y;z)\).
Vecto chỉ phương của đoạn
\(BC\) là: \({\vec u_{BC}} = \frac{{\overrightarrow {BC} }}{{|\overrightarrow {BC} |}} = \frac{{(1500 - 0;600 - 600;0 - 0)}}{{\sqrt {{{1500}^2} + {0^2} + {0^2}} }} = \frac{{(1500;0;0)}}{{1500}} = (1;0;0)\).
Vị trí của xe tại thời điểm \(t\) là: \(M(t) = B + v \cdot t \cdot {\vec u_{BC}}\)
\(M(t) = (0;600;0) + 100 \cdot t \cdot (1;0;0)\)
\(M(t) = (0 + 100t;600 + 0;0 + 0)\)
\(M(t) = (100t;600;0)\).
Khoảng cách từ xe mô tô đến vị trí xuất phát
\(A(0;0;0)\) tại thời điểm \(t\)\(D(t)\):
\(D(t) = |\overrightarrow {AM(t)} | = \sqrt {{{(100t - 0)}^2} + {{(600 - 0)}^2} + {{(0 - 0)}^2}} \)\( = \sqrt {{{(100t)}^2} + {{600}^2}} \)\( = 100\sqrt {{t^2} + 36} \).
Tốc độ thay đổi khoảng cách của xe mô tô đối với vị trí xuất phát
\(A\) chính là đạo hàm của \(D\left( t \right)\) theo \(t\):
\(D'\left( t \right) = {\left( {100\sqrt {{t^2} + 36} } \right)^\prime }\)\( = 100 \cdot \frac{1}{{2\sqrt {{t^2} + 36} }} \cdot (2t)\)\( = \frac{{100t}}{{\sqrt {{t^2} + 36} }}\).
Tại phút thứ 8 kể từ khi xe đổi hướng, tức là
\(t = 8\) phút.
Thay
\(t = 8\) vào biểu thức \(D'\left( t \right)\) ta được:
\(D'\left( 8 \right) = \frac{{100 \cdot 8}}{{\sqrt {{8^2} + 36} }}\)\( = \frac{{800}}{{\sqrt {64 + 36} }}\)\( = \frac{{800}}{{\sqrt {100} }}\)\( = \frac{{800}}{{10}}\)\( = 80\) (m/phút).
Vậy, ở phút thứ 8 kể từ khi xe đổi hướng, tốc độ thay đổi khoảng cách của xe mô tô đối với vị trí xuất phát
\(A\) là 80 m/phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 100.

Chi phí vận chuyển cho mỗi đợt là \(0,002{x^2} + 20\) đô la.

Số lần vận chuyển trong năm là \(\frac{{2500}}{x}\) lần.

Tổng chi phí vận chuyển trong năm là: \(f\left( x \right) = \left( {0,002{x^2} + 20} \right).\frac{{2500}}{x} = 5x + \frac{{50000}}{x}\)

Ta có: \(f'\left( x \right) = 5 - \frac{{50000}}{{{x^2}}} = 0 \Rightarrow x = 100\).

Một cửa hàng cần nhập 2500 chiếc máy tính bảng trong 1 năm. Cửa hàng chọn chia thành nhiều đợt giao hàng, mỗi đợt giao \(x\) chiếc \(\left( {1 \le x \le 2500,\,x \in {\mathbb{N}^*}} \right)\). (ảnh 2)

Từ bảng biến thiên, ta thấy mỗi đợt công ti nên vận chuyển 100 cái máy tính thì tổng chi phí vận chuyển trong năm là nhỏ nhất

Lời giải

Công tử Bạc Liêu có một mảnh đất hình vuông ở một khu đô thị sầm uất, hình vuông có cạnh (ảnh 2)

Gán hệ trục tọa độ như hình vẽ. Ta dễ dàng tìm được \((P):y = - \frac{1}{{40}}{x^2} + 10\).

Diện tích hồ bơi là: \({S_b} = 2\int\limits_0^{20} {\left( { - \frac{1}{{40}}{x^2} + 10} \right)} = \frac{{800}}{3}\).

Gọi \(\alpha \) là góc tạo bởi tia \(Ot\) trục \(Ox\).

Lúc đó: \[M(OM\cos \alpha ;OM{\rm{ sin}}\alpha {\rm{)}}\]. Vì \[M \in \left( P \right)\]\( \Rightarrow OM{\rm{ sin}}\alpha = \frac{{ - 1}}{{40}}{\left( {OM{\rm{ cos}}\alpha } \right)^2} + 10\).

\[ \Rightarrow O{M^2}{\rm{ }}{\left( {{\rm{cos}}\alpha } \right)^2} + 40OM{\rm{ sin}}\alpha - 400 = 0 \Leftrightarrow \left[ \begin{array}{l}OM = \frac{{ - 20\sin \alpha - 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\\OM = \frac{{ - 20\sin \alpha + 20}}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}}\end{array} \right.\].

Ta chọn \(OM = \frac{{20 - 20\sin \alpha }}{{{{\left( {{\rm{cos}}\alpha } \right)}^2}}} = \frac{{20}}{{1 + \sin \alpha }}\).

TH1: \(\alpha \in \left[ {0,\arctan 2} \right] \Rightarrow ON = \frac{{20}}{{{\rm{cos}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}\).

TH2: \(\alpha \in \left[ {\arctan 2,\frac{\pi }{2}} \right] \Rightarrow ON = \frac{{40}}{{{\rm{sin}}\alpha }}\). Suy ra: \(OP = \frac{{OM + ON}}{2} = \frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}\).

\[{S_{(L)}} = 2\left[ {\frac{1}{2}\int\limits_0^{\arctan 2} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{10}}{{{\rm{cos}}\alpha }}} \right)}^2}} {\rm{d}}\alpha + \frac{1}{2}\int\limits_{\arctan 2}^{\frac{\pi }{2}} {{{\left( {\frac{{10}}{{1 + \sin \alpha }} + \frac{{20}}{{{\rm{sin}}\alpha }}} \right)}^2}} {\rm{d}}\alpha } \right] = 756,3({m^2})\].

Tổng chi phí:

\(5.{S_b} + 2.\left( {{S_L} - {S_b}} \right) + 0,1\left( {{S_V} - {S_L}} \right) = 5.\frac{{800}}{3} + 2.\left( {756,3 - \frac{{800}}{3}} \right) + 0,1\left( {1600 - 756,3} \right) = 2396,97 \approx 2,4\)tỉ.

Lưu ý: Ở trên ta sử dụng công thức của bổ đề sau:

Cho một đương cong ( \(L\) ) có phương trình trong hệ tọa độ cực là \(r = r\left( \theta \right)\), với \(\alpha \le \theta \le \beta \). Tính diện tích \(S\) của hình phẳng giới hạn bởi đường cong \(\left( L \right)\) và hai tia \(\theta = \alpha ,\theta = \beta \).

\(S = \int_\alpha ^\beta {\frac{1}{2}} {[r(\theta )]^2}d\theta \).

Câu 3

a) [NB] Tại thời điểm \(t = 0\), vận tốc của con lắc đơn là \(v\left( 0 \right) = 1\).
Đúng
Sai
b) [TH] Đạo hàm của \(v\left( t \right)\)\(v'\left( t \right) = - 4\cos \left( {2t + \frac{\pi }{6}} \right)\)
Đúng
Sai
c) [TH] Phương trình \(v'\left( t \right) = 0\) có nghiệm duy nhất trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\)\(\frac{\pi }{6}\)
Đúng
Sai
d) [VD] Trong khoảng thời gian từ 0 đến 10 giây, con lắc đơn có 4 lần đạt vận tốc lớn nhất.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) [NB] Xác suất lấy được 2 quả bóng đỏ từ hộp A để bỏ sang hộp B là \(\frac{2}{7}\).
Đúng
Sai
b) [TH] Sau khi bỏ 2 quả bóng từ hộp A sang, hộp B có tất cả 9 quả bóng.
Đúng
Sai
c) [TH] Xác suất để 2 quả bóng lấy ra từ hộp B là 2 quả bóng đỏ là \(\frac{{25}}{{196}}\).
Đúng
Sai
d) [VD, VDC] Biết rằng 2 quả bóng lấy ra từ hộp B là 2 quả bóng đỏ. Xác suất để 2 quả bóng lấy từ hộp A (chuyển sang B) cũng là 2 quả bóng đỏ là \(\frac{{12}}{{25}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP