Đường thẳng nào dưới đây là đường tiệm cận xiên của đồ thị hàm số \(y = 2x - 5 + \frac{{10}}{{x + 3}}\)?
Quảng cáo
Trả lời:
Chọn A
Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } \left( {y - \left( {2x - 5} \right)} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{10}}{{x + 3}} = 0\) nên đường tiệm cận xiên của đồ thị hàm số là \(y = 2x - 5\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
a) Đúng. Vì thời điểm ban đầu \(t = 0\), \(h\left( 0 \right) = 70{\log _2}1 + 30 = 30\) (cá thể).
b) Đúng. Vì \(9\) tháng bằng \(\frac{3}{4}\) năm.
Do đó số lượng cá thể của loài động vật đó sau \(9\) tháng kể từ khi bắt đầu nuôi bằng
\(h\left( {\frac{3}{4}} \right) = 70{\log _2}\left( {\frac{{8.\frac{3}{4} + 1}}{{\frac{3}{4} + 1}}} \right) + 30 = 70{\log _2}4 + 30 = 170\).
c) Sai. Vì
\(\begin{array}{l}h\left( t \right) = 70{\log _2}\left( {\frac{{8t + 1}}{{t + 1}}} \right) + 30\\ \Rightarrow h'\left( t \right) = 70.\frac{1}{{\left( {\frac{{8t + 1}}{{t + 1}}} \right).\ln 2}}.{\left( {\frac{{8t + 1}}{{t + 1}}} \right)^\prime } = \left( {\frac{{t + 1}}{{8t + 1}}} \right).\frac{7}{{\ln 2.{{\left( {t + 1} \right)}^2}}} = \frac{7}{{\ln 2}}.\frac{1}{{\left( {t + 1} \right).\left( {8t + 1} \right)}}\end{array}\)
Tốc độ tăng trưởng số lượng cá thể của loài động vật đó tại thời điểm đúng \(6\) năm kể từ khi nuôi là \(h'\left( 6 \right) = \frac{7}{{\ln 2}}.\frac{1}{{\left( {6 + 1} \right).\left( {8.6 + 1} \right)}} = \frac{1}{{49.\ln 2}} = 0,029444275594\)( cá thể /năm).
d) Đúng. Vì \(h'\left( t \right) = \frac{7}{{\ln 2}}.\frac{1}{{\left( {t + 1} \right).\left( {8t + 1} \right)}} > 0,\forall t \ge 0\).
Ta có \(h\left( 0 \right) = 30\) và \(\mathop {\lim }\limits_{t \to + \infty } \frac{{8t + 1}}{{t + 1}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{8 + \frac{1}{t}}}{{1 + \frac{1}{t}}} = 8\),
suy ra \(\mathop {\lim }\limits_{t \to + \infty } h\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \left( {70{{\log }_2}\left( {\frac{{8t + 1}}{{t + 1}}} \right) + 30} \right) = 70.{\log _2}8 + 30 = 240\).
Từ đó ta có BBT của hàm số \(h\left( t \right)\) như sau:

Vậy số lượng cá thể của loài động vật đó không vượt quá \(240\).
Lời giải
Đáp án: \[33\].

Góc ở tâm chắn một cạnh của đa giác có số đo là: \[360^\circ :36 = 10^\circ \].
Góc nội tiếp chắn một cạnh của đa giác có số đo là: \[10^\circ :2 = 5^\circ \].
Để tạo thành một tam giác có một góc bằng \[120^\circ \] thì phải có góc nội tiếp chắn 24 cung liên tiếp từ 24 dây là 24 cạnh liền kề nhau của đa giác.
Chọn 2 đỉnh cách nhau 24 cạnh, có 36 cách chọn (chẳng hạn như \[{A_1}{A_{25}},{A_2}{A_{26}},...,{A_{36}}{A_{24}}\])
Với mỗi cách chọn 2 đỉnh ở trên, có 11 cách chọn đỉnh còn lại thoả mãn (ví dụ chọn cạnh \[{A_1}{A_{25}}\] thì các cách chọn đỉnh còn lại là \[{A_{26}},{A_{27}},...,{A_{36}}\]).
Vậy, số tam giác được tạo thành có một góc bằng \[120^\circ \] là: \[36.11 = 396\] (tam giác).
Số cách chọn ngẫu nhiên 3 đỉnh từ 36 đỉnh của đa giác là: \[C_{36}^3 = 7140\] (cách).
Xác suất cần tìm là: \[P = \frac{{396}}{{7140}} = \frac{{33}}{{595}}\].
Vậy \[595P = 33\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.