I. PHẦN TRẮC NGHIỆM KHÁCH QUAN
Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây.
Cho dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f}\) với \(b;\,\,d;\,\,f \ne 0\). Khẳng định nào sau đây sai?
I. PHẦN TRẮC NGHIỆM KHÁCH QUAN
Hãy khoanh tròn vào phương án đúng duy nhất trong mỗi câu dưới đây.
Cho dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f}\) với \(b;\,\,d;\,\,f \ne 0\). Khẳng định nào sau đây sai?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 7 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a + c + e}}{{b + d + f}} = \frac{{a - c + e}}{{b - d + f}} = \frac{{a - c - e}}{{b - d - f}}\) (theo tính chất dãy tỉ số bằng nhau).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x;\,\,y;\,\,z\) (kg) lần lượt là khối lượng hàng hóa cần chuyển đến ba địa điểm \(\left( {0 < x,\,\,y,\,\,z < 1\,\,350} \right)\).
Vì tổng khối lượng hàng hóa là 1 530 kg nên \(x + y + z = 1\,\,530\).
Vì khối lượng hàng hóa chuyển đến ba địa điểm tỉ lệ nghịch với khoảng cách nên ta có:
\(1500x = 2000y = 3000z\) hay \(15x = 20y = 30z\).
Suy ra, \(\frac{{15x}}{{60}} = \frac{{20y}}{{60}} = \frac{{30z}}{{60}}\) hay \(\frac{x}{4} = \frac{y}{3} = \frac{z}{2}\).
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4} = \frac{y}{3} = \frac{z}{2} = \frac{{x + y + z}}{{4 + 3 + 2}} = \frac{{1530}}{9} = 170\)
Ta có: \(\frac{x}{4} = 170\) nên \(x = 170\,\,.\,\,4 = 680\) (thỏa mãn)
\(\frac{y}{3} = 170\) nên \(y = 170\,\,.\,\,3 = 510\) (thỏa mãn)
\(\frac{z}{2} = 170\) nên \(z = 170\,\,.\,\,2 = 340\) (thỏa mãn)
Vậy khối lượng ba đội công nhân vận chuyển lần lượt là 680 kg; 510 kg; 340 kg.
Lời giải
a) Vì tam giác \(ABC\) cân tại \(A\) nên \(AB = AC\)(1).
Vì \(BD\); \(CE\) là đường trung tuyến nên \(D\) là trung điểm của \(AC\) và \(E\) là trung điểm của \(AB\).
Do đó, \(AE = EB = \frac{1}{2}AB;\,\,AD = DC = \frac{1}{2}AC\) (2)
Từ (1); (2) ta suy ra \(AE = EB = AD = DC\).
Xét \(\Delta BEC\) và \(\Delta CDB\) có:
\(BE = DC\) (chứng minh trên)
Cạnh \(BC\) chung
\(\widehat {EBC} = \widehat {DCB}\) (do \(\Delta ABC\) cân tại \(A\))
Do đó, \(\Delta BEC = \Delta CDB\) (g.c.g)
Suy ra \(BD = CE\) (hai cạnh tương ứng) (3)
Vì \(G\) là trong tâm tam giác \(ABC\) nên \[BG = \frac{2}{3}BD;\,\,CG = \frac{2}{3}CE\] (4)
Từ (3), (4) suy ra \(GB = GC\).
b) \(P\) là điểm nằm trong tam giác \(ABC\), đường thẳng \(BP\) cắt \(AC\) tại \(N\):
Ta có: \(AB + AC = AB + AN + NC = \left( {AB + AN} \right) + NC\) (5)
Xét tam giác \(ABN\) có: \(AB + AN > NB\) (bất đẳng thức tam giác)
Suy ra, \(AB + AN > BP + PN\) (do \(NB = BP + PN\))
Do đó, \(AB + AN + NC > BP + PN + NC\) (6)
Từ (5) và (6) suy ra: \(AB + AC > BP + PN + NC = BP + \left( {PN + NC} \right)\)
Hay \(AB + AC > BP + PC\). Mà tam giác \(ABC\) cân tại \(A\) nên \(AB = AC\).
Do đó, \(2AB > PB + PC\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
