Câu hỏi:

12/02/2026 12 Lưu

Trong một phòng thí nghiệm, người ta nuôi một loại vi khuẩn. Lúc đầu có 300 vi khuẩn. Sau một giờ, số vi khuẩn là \(705\)con. Giả sử số vi khuẩn tăng lên theo công thức tăng trưởng mũ, số vi khuẩn sau \(x\) giờ là \(f(x) = C \cdot {e^{kx}}\).

Hỏi số vi khuẩn có được sau 5 giờ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lúc đầu có 300 vi khuẩn. Sau một giờ, số vi khuẩn là 705 con.

\({\rm{ Ta c\'o  }}\left\{ {\begin{array}{*{20}{l}}{f(0) = 300 = C.{e^{k.0}} = C}\\{f(1) = 705 = C.{e^{k.1}} = C.{e^k}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{C = 300}\\{{e^k} = \frac{{705}}{{300}} = 2,35}\end{array}} \right.} \right.{\rm{. }}\)Vậy \(f(x) = 300 \cdot {(2,35)^x}\).

Số vi khuẩn có được sau 5 giờ là \(f(5) = 300 \cdot {(2,35)^5} \approx 21501\) con.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \({T_S} = 65\) và độ chênh lệch nhiệt độ là \({D_0} = 195 - 65 = 130\)

Sau nửa giờ \((t = 0,5)\) thì nhiệt độ của gà là \(T = 150\).

Áp dụng công thức (1): \(150 = 65 + 130 \cdot {e^{ - k(0,5)}} \Leftrightarrow {e^{ - k}} = {\left( {\frac{{17}}{{26}}} \right)^2}\).

Vậy \(T(t) = 65 + 130 \cdot {\left( {\frac{{17}}{{26}}} \right)^{2t}}\).

Suy ra nhiệt độ của gà sau 60 phút \(\left( {t = 1} \right.\) giờ) là 65+13017262.1121°F.

Lời giải

Hàm số \(y = \ln \left( {{x^2} - 6x + m - 2} \right)\) có tập xác định là \(\mathbb{R}\) khi và chỉ khi \({x^2} - 6x + m - 2 > 0\),\(\forall x \in \mathbb{R}\)\( \Leftrightarrow \Delta ' < 0\)\( \Leftrightarrow 9 - m + 2 < 0 \Leftrightarrow m > 11\). Do đó, tập các giá trị nguyên của tham số \(m\) thỏa mãn là \(\left\{ {12,\,13,14,...,2022} \right\}\). Vậy có \(2011\) số nguyên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \({a^{\sqrt 2 }} < {a^{\sqrt 3 }}\) suy ra \(a > 1\)

Đúng
Sai

b) \({\log _b}30 < {\log _b}29,7\) suy ra \(0 < b < 1\)

Đúng
Sai

c) \({a^{\frac{{\sqrt 3 }}{4}}} > {a^{\frac{{\sqrt 2 }}{3}}}\) suy ra \(a < 1\)

Đúng
Sai
d) \({\log _b}7 < {\log _b}2\) suy ra \(b > 1\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP