Câu hỏi:
13/07/2024 3,272Trong mặt phẳng tọa độ Oxy, trên các tia Ox và Oy lần lượt lấy các điểm A và B thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O bán kính 1. Xác định tọa độ của A và B để đoạn AB có độ dài nhỏ nhất.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi tiếp điểm của AB và đường tròn tâm O, bán kính 1 là M, ta có: OM ⊥ AB.
ΔOAB vuông tại O, có OM là đường cao nên MA.MB = MO2 = 1 (hằng số)
Áp dụng bất đẳng thức Cô-si ta có:
MA + MB ≥ 2√MA.MB = 2. √1 = 2
Dấu « = » xảy ra khi MA = MB = 1.
Khi đó OA = √(MA2 + MO2) = √2 ; OB = √(OM2 + MB2) = √2.
Mà A, B nằm trên tia Ox và Oy nên A(√2; 0); B(0; √2)
Vậy tọa độ là A(√2, 0) và B(0, √2).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a, b, c là độ dài ba cạnh của một tam giác.
a) Chứng minh (b - c)2 < a2
b) Từ đó suy ra: a2 + b2 + c2 < 2(ab + bc + ca)
Câu 2:
Trong các khẳng định sau, khẳng định nào đúng với mọi giá trị của x?
a) 8x > 4x ; b) 4x > 8x
c) 8x2 > 4x2 ; d) 8 + x > 4 + x
Câu 4:
Nhắc lại định nghĩa giá trị tuyệt đối và tính giá trị tuyệt đối của các số sau:
a) 0;
b) 1,25;
c) (-3)/4;
d) -π.
Câu 5:
Trong các mệnh đề sau, mệnh đề nào đúng
a) 3,25 < 4;
b) ;
c) -√2 ≤ 3 ?
Câu 6:
Chọn dấu thích hợp (=, <, >) để khi điền vào chỗ trống ta được một mệnh đề đúng.
a) 2√2 (.....) 3;
b) 4/3 (.....) 2/3;
c) 3 + 2√2 (.....) (1 + √2)2;
d) a2 + 1 (.....) 0 với a là một số đã cho.
về câu hỏi!