Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Cách 1: Chứng minh quy nạp.
Đặt Un = n3 + 11n
+ Với n = 1 ⇒ U1 = 12 chia hết 6
+ giả sử đúng với n = k ≥ 1 ta có:
Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)
Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6
Thật vậy ta có:
Uk+1 = (k + 1)3 + 11(k +1)
= k3 + 3k2 + 3k + 1 + 11k + 11
= (k3 + 11k) + 3k2 + 3k + 12
= Uk + 3(k2 + k + 4)
Mà: Uk ⋮ 6 (giả thiết quy nạp)
3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)
⇒ Uk + 1 ⋮ 6.
Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 11n
= n3 – n + 12n
= n(n2 – 1) + 12n
= n(n – 1)(n + 1) + 12n.
Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3
⇒ n(n – 1)(n + 1) ⋮ 6.
Lại có: 12n ⋮ 6
⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
cho tổng với
a.Tính S1, S2, S3
b.Dự đoán công thức tính tổng Sn và chứng minh bằng quy nạp.
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
93 Bài tập trắc nghiệm Lượng giác lớp 11 có lời giải (P1)
75 câu trắc nghiệm Giới hạn nâng cao (P1)
29 câu Trắc nghiệm Đại số và Giải tích 11 Bài 1 (Có đáp án): Hàm số lượng giác
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
về câu hỏi!