Câu hỏi:

14/04/2020 289

Cho hai điểm A(1;0;0), B(2;0;-1) và mặt cầu S: x2+y2+z2-2x-2y+1=0. Có tất cả bao nhiêu mặt phẳng chứa hai điểm A, B và tiếp xúc với mặt cầu (S)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Ta có: S: x-12+y-12+z2=1. Do đó (S) có tâm I(1;1;0) và bán kính R = 1.

Dễ kiểm tra A1; 0; 0S. Do đó mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm A sẽ nhận 1 vectơ pháp tuyến là IA 0; -1; 0. Phương trình của mặt phẳng P: y=0. 

Do BP nên có duy nhất một mặt phẳng thỏa mãn là P: y=0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP