Câu hỏi:

15/04/2020 3,568

Giả sử f(x) là hàm số liên tục trên đoạn [a; b], F(x) và G(x) là hai nguyên hàm của f(x). Chứng minh rằng F(b) – F(a) = G(b) – G(a), (tức là hiệu số F(b) – F(a) không phụ thuộc việc chọn nguyên hàm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C

- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt u = 1 – x;

⇒ du = -dx

Đổi biến :

Giải bài 6 trang 113 sgk Giải tích 12 | Để học tốt Toán 12

Theo công thức tích phân từng phần:

Giải bài 6 trang 113 sgk Giải tích 12 | Để học tốt Toán 12

Lời giải

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP