Câu hỏi:

13/07/2024 722 Lưu

Nêu định nghĩa và các phương pháp tính tích phân.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

• Định nghĩa

Cho hàm số y = f(x) liên tục trên [a; b] , F(x) là một nguyên hàm của f(x) trên [a; b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x)

Giải bài tập Giải tích 12 | Để học tốt Toán 12

• Phương pháp tính tích phân

a) Đổi biến số:

Định lí 1: Cho hàm số f(x) liên tục trên [a; b]. Giả sử hàm số x = φ(t) có đạo hàm liên tục trên đoạn [ α;β] sao cho φ(α) = a; φ(β) = βvà a ≤ φ(t) ≤ b với mọi t ∈ [α;β]. Khi đó:

Giải bài tập Giải tích 12 | Để học tốt Toán 12

b) Tích phân từng phần

Nếu u = u(x) và v = v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a; b] thì:

Giải bài tập Giải tích 12 | Để học tốt Toán 12

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. Hàm số mũ

Cho số a > 0 và a ≠ 1. Hàm số y = ax được gọi là hàm số mũ cơ số a.

Các tính chất của hàm số mũ y = ax

Tập xác định(-∞; +∞)
Đạo hàmy’= ax.lna
Chiều biến thiên

+ Nếu a > 1 thì hàm số luôn đồng biến

+ Nếu 0 < a < 1 thì hàm số nghịch biến

Tiệm cậnTrục Ox là tiệm cận ngang
Đồ thị

Đi qua các điểm (0; 1); (1; a)

Nằm phía trên trục hoành ( y = ax > 0 mọi x)

 

2. Hàm Logarit

Cho số a > 0 và a ≠ 1 . Hàm số y = logax được gọi là hàm số logarit cơ số a

Giải bài tập Giải tích 12 | Để học tốt Toán 12

Tập xác định(0; +∞)
Đạo hàmGiải bài tập Giải tích 12 | Để học tốt Toán 12
Chiều biến thiên

+ Nếu a > 1: hàm số luôn đồng biến

+ Nếu 0 < a < 1: hàm số luôn nghịch biến

Tiệm cậnTrục Oy là tiệm cận đứng
Đồ thị

Đi qua các điểm (1; 0); (a; 1)

Nằm bên phải trục tung.

3. Liên hệ giữa đồ thị của hàm số mũ và hàm số logarit cùng cơ số: Đồ thị của hàm số mũ và đồ thị của hàm số logarit đối xứng nhau qua đường phân giác góc phần tư thứ nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP