Cho hàm số y = + bx+1
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b
Câu hỏi trong đề: Giải tích 12 - Phần giải tích !!
Quảng cáo
Trả lời:
Với a = 1; b = -1, hàm số trở thành: y = – x + 1.
- Tập xác định : D = R.
- Sự biến thiên :
+ Bảng biến thiên :
Kết luận :
Hàm số đồng biến trên (-∞ ; -1) và
Hàm số nghịch biến trên
Hàm số đạt cực đại tại x = -1 ; yCĐ = 2.
Hàm số đạt cực tiểu tại
- Đồ thị :
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1. Hàm số mũ
Cho số a > 0 và a ≠ 1. Hàm số y = được gọi là hàm số mũ cơ số a.
Các tính chất của hàm số mũ y =
| Tập xác định | (-∞; +∞) |
| Đạo hàm | y’= .lna |
| Chiều biến thiên | + Nếu a > 1 thì hàm số luôn đồng biến + Nếu 0 < a < 1 thì hàm số nghịch biến |
| Tiệm cận | Trục Ox là tiệm cận ngang |
| Đồ thị | Đi qua các điểm (0; 1); (1; a) Nằm phía trên trục hoành ( y = > 0 mọi x) |
2. Hàm Logarit
Cho số a > 0 và a ≠ 1 . Hàm số y = logax được gọi là hàm số logarit cơ số a
| Tập xác định | (0; +∞) |
| Đạo hàm | |
| Chiều biến thiên | + Nếu a > 1: hàm số luôn đồng biến + Nếu 0 < a < 1: hàm số luôn nghịch biến |
| Tiệm cận | Trục Oy là tiệm cận đứng |
| Đồ thị | Đi qua các điểm (1; 0); (a; 1) Nằm bên phải trục tung. |
3. Liên hệ giữa đồ thị của hàm số mũ và hàm số logarit cùng cơ số: Đồ thị của hàm số mũ và đồ thị của hàm số logarit đối xứng nhau qua đường phân giác góc phần tư thứ nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.