Câu hỏi:

24/04/2020 1,959

Cho hàm số f(x)=ax3+bx2+cx+d(a,b,c,d) có đồ thị như hình vẽ. Đồ thị hàm số g(x)=x2+4x+3x2+xxfx2-2f(x) có bao nhiêu đường tiệm cận đứng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện:

 

Từ đồ thị hàm số y=f(x) ta thấy phương trình f(x)=0 có nghiệm x=-3 (bội 2) và nghiệm đơn x=x0-1;0 nên ta viết lại f(x)=ax+32x-x0 

Khi đó

Dựa vào đồ thị ta cũng thấy, đường thẳng y=2 cắt đồ thị hàm số y=f(x) tại ba điểm phân biệt x=-1,x=x1-3;-1,x=x2<-3 nên ta viết lại

 

Khi đó

 

 

Dễ thấy x=x0-1;0 nên ta không xét giới hạn của hàm số tại điểm x0  

Ta có:

+) limx0+g(x)=limx0+

 

x=0 là đường TCĐ của đồ thị hàm số y=g(x) 

+)  

 Các đường thẳng x=-3,x=x1,x=x2 đều là các đường tiệm cận đứng của đồ thị hàm số y=g(x)

Vậy đồ thị hàm số y=g(x) có tất cả 4 đường tiệm cận đứng.

Chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích tam giác ABC là:

 SABC=12AB.AC.sinA=12a.2a.32=a232

Thể tích lăng trụ

V=SABC.AA'=a332.2a5=a315

Chọn đáp án A.

Câu 2

Lời giải

Từ đồ thị hàm số f(x) ta thấy đồ thị cắt trục hoành tại ba điểm phân biệt có hoành độ x=0;x=1;x=3 

Lại thấy đồ thị hàm số y=f(x) có ba điểm cực trị nên

 

Hàm số y=fx2 có đạo hàm y'=2f(x).f '(x) 

Xét phương trình  

Ta có BXD của y' như sau

Nhận thấy hàm số y=fx2 có y' đổi dấu từ âm sang dương tại ba điểm x=0;x=1;x=3 nên hàm số có ba điểm cực tiểu. Và y' đổi dấu từ dương sang âm tại hai điểm x=x1;x=x2 nên hàm số có hai điểm cực đại.

Chọn đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP