Câu hỏi:

13/07/2024 789

Chứng tỏ rằng, trong một tam giác độ dài một cạnh luôn nhỏ hơn nửa chu vi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi a, b, c lần lượt là độ dài ba cạnh của tam giác.

Chu vi tam giác là a + b + c.

Theo bất đẳng thức tam giác, ta có:

      a < b + c

      ⇔ a + a < a + b + c

      ⇔ 2a < a + b + c

      ⇔ a < (a + b + c)/2

Tương tự:

      b < a + c

      ⇔ b + b < a + b + c

      ⇔ 2b < a + b + c

      ⇔ b < (a + b + c)/2

      c < a + b

      ⇔ c + c < a + b + c

      ⇔ 2c < a + b + c

      ⇔ c < (a + b + c)/2

Vậy trong một tam giác độ dài một cạnh luôn nhỏ hơn nửa chu vi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (km) là đoạn đường người đó đi với vận tốc 5km/h. ĐK: x < 18.

Khi đó đoạn đường người đó đi với vận tốc 4km/h là 18 – x(km)

Thời gian đi với vận tốc 5km/h là x/5 giờ

Thời gian đi với vận tốc 4km/h là (18 - x)/4 giờ.

Vì thời gian đi hết đoạn đường không quá 4 giờ nên ta có bất phương trình: x/5 + (18 - x)/4 ≤ 4.

Ta có: x/5 + (18 - x)/4 ≤ 4

      ⇔ x/5 .20 + (18 - x)/4 .20 ≤ 4.20

      ⇔ 4x + 90 – 5x ≤ 80

      ⇔ 4x – 5x ≤ 80 – 90

      ⇔ -x ≤ -10

      ⇔ x ≥ 10

Vậy đoạn đường đi với vận tốc 5km/h ít nhất là 10km.

Lời giải

Trường hợp 1: x – 2 > 0 và x – 3 > 0

Ta có: x – 2 > 0 ⇔ x > 2

x – 3 > 0 ⇔ x > 3

Suy ra: x > 3

Trường hợp 2: x – 2 < 0 và x – 3 < 0

Ta có: x – 2 < 0 ⇔ x < 2

x – 3 < 0 ⇔ x < 3

Suy ra: x < 2

Vậy với x > 3 hoặc x < 2 thì x2x3>0?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP