Câu hỏi:

27/04/2020 342

Cho hình nón đỉnh S có đường sinh bằng 2, đường cao bằng 1. Tìm đường kính của  mặt cầu chứa điểm S và chứa đường tròn đáy hình nón đã cho

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi O, R lần lượt là tâm và bán kính của mặt cầu.

Đường tròn đáy của hình nón có tâm H bán kính r.

Do H là hình chiếu của S và O trên mặt đáy của hình nón nên S, H, O thẳng hàng.

Hình nón có độ dài đường sinh l=2, đường cao h=1.

Suy ra r=l2-h2=3

Góc ở đỉnh của hình nón là ASB=2ASH=120° nên suy ra HSO (như hình vẽ).

Trong tam giác OAH vuông tại H ta có:

OA2=OH2+HA2R2=R-h2+r2R=h2+r22h=2

Vậy đường kính mặt cầu chứa điểm S và đường tròn đáy hình nón bằng 4.

Chọn đáp án A.

Cách 2:

Gọi O, R lần lượt là tâm và bán kính của mặt cầu.

Đường tròn đáy của hình nón có tâm H bán kính r.

Do H là hình chiếu của S và O trên mặt đáy của hình nón nên S, H, O thẳng hàng.

Hình nón có độ dài đường sinh l=2, đường cao h=1. (như hình vẽ)

Trong tam giác SAH vuông tại H ta có

cosASH=SHSA=12ASH=60°

Xét tam giác SOA có OS=OA=R và OSA=60°

Suy ra tam giác SOA đều.

Do đó R=OA=SA=2

Vậy đường kính mặt cầu chứa điểm S và đường tròn đáy hình nón bằng 4.

Chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian Oxyz, mặt phẳng nào trong các mặt phẳng sau song song với trục Oz?

Lời giải

Ta có trục Oz có véctơ chỉ phương là k=(0;0;1) 

Gọi n(α)=(0;0;1), nP=(1;1;0)

nQ=1;11;0, nβ=0;0;1

lần lượt là véctơ pháp tuyến của các mặt phẳng α,P,Q,β 

Nhận thấy nα.k=0.0+0.0+1.1=1#0

nβ.k=0.0+0.0+1.1=1#0 nên ta loại A và D.

Nhận thấy nP.k=1.0+1.0+0.1=0

OOzPOzP nên ta loại B.

Chọn đáp án C.

Câu 2

Tất cả các nguyên hàm của hàm số f(x)=sin5x là

Lời giải

Ta có

sin5xdx=15sin5xd(5x)=-15cos5x+C 

Chọn đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay