Câu hỏi:
27/04/2020 2,063Tam giác ABC có tổng độ dài hai cạnh AB + AC = 10,75 cm và đồng dạng với tam giác A’B’C’ có độ dài các cạnh A’B’ = 8,5cm, A’C’ = 7,35cm, B’C’ = 6,25cm.
Tính chính xác đến hai chữ số thập phân, chu vi của tam giác ABC là:
A. 45,36
B. 14,46
C. 14,98
D. 14,50
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Vì tam giác ABC và tam giác A’B’C’ đồng dạng nên:
Vậy chu vi tam giác ABC là: AB + AC + BC = 10,75 + 4,24 = 14,99(cm)
Chọn C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có AB = 3cm, BC = 5cm, CA= 7cm. Tam giác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5cm.Tính các cạnh còn lại của tam giác A'B'C'.
Câu 2:
Cho tam giác ABC có AB = 16,2cm, BC = 24,3cm, AC = 32,7cm. Tính độ dài các cạnh của tam giác A'B'C', biết rằng tam giác A'B'C đồng dạng với tam giác ABC và: A'B' lớn hơn cạnh AB là 10,8cm.
Câu 3:
Cho hai tam giác A'B'C' và ABC đồng dạng với nhau theo tỉ số k. Chứng minh rằng tỉ số hai chu vi tam giác cũng bằng k.
Câu 4:
Hình thang ABCD (AB // CD) có CD= 2AB. Gọi E là trung điểm của CD. Chứng minh rằng ba tam giác ADE, ABE và BEC đồng dạng với nhau từng đôi một.
Câu 5:
Cho tam giác ABC có AB = 16,2cm, BC = 24,3cm, AC = 32,7cm. Tính độ dài các cạnh của tam giác A'B'C', biết rằng tam giác A'B'C đồng dạng với tam giác ABC và: A'B' bé hơn cạnh AB là 5,4cm.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
10 Bài tập Ứng dụng của xác suất thực nghiệm trong một số bài toán đơn giản (có lời giải)
Cách tìm mẫu thức chung cực hay, nhanh nhất
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
về câu hỏi!