Câu hỏi:

27/04/2020 1,428

Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z1,z2 thỏa mãn đồng thời các phương trình z-1=z-i và z+2m=m+1. Tổng tất cả các phần tử của S

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1 (cách hình học): Gọi M(x;y)x.y là điểm biểu diễn của số phức z thỏa mãn yêu cầu bài toán.

Có: z+2m=m+10 

TH1: m+1=0m=-1z=2 (loại) vì không thỏa mãn phương trình: z-1=z-i 

TH2: m+1>0m>-1 

Theo bài ra ta có:

z-1=z-iz+2m=m+1x-1+yi=x+y-1ix+2m+yi=m+1x-12+y2=x2+y-12x+2m2+y2=m+12x-y=01x+2m2+y2=m+122*

Từ (1) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường thẳng: (): x-y=0 

Từ (2) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường tròn

(C): Tâm I(-2m;0)bk R=m+1 

Khi đó: M(C) số giao điểm M chính là số nghiệm của hệ phương trình (*).

Để tồn tại hai số phức phân biệt z1,z2 thỏa mãn ycbt (C) cắt  tại hai điểm phân biệt

dI,<R-2m2<m+1m+1>0-m+1<2m<m+1m+1>01-2<m<1+2m>-1

mmS0;1;2. Vậy tổng các phần tử của S là 0+1+2=3.

 

Cách 2 (cách đại số):

Giả sử: z=x+yix;y 

Có: z+2m=m+10

TH1: m+1=0m=-1z=2 (loại) vì không thỏa mãn phương trình: z-1=z-i 

TH2: m+1>0m>-1 (1)

Theo bài ra ta có:

z-1=z-iz+2m=m+1x-1+yi=x+y-1ix+2m+yi=m+1x-12+y2=x2+y-12x+2m2+y2=m+12y=xx+2m2+x2=m+12y=x2x2+4mx+3m2-2m+1=0*

Để tồn tại hai số phức phân biệt z1,z2 thỏa mãn ycbt PT (*) có 2 nghiệm phân biệt

'=4m2-2(3m2-2m-1)=2-m2+2m+1>01-2<m<1+2(2)

Kết hợp điều kiện (1) và (2), mmS=0;1;2

Vậy tổng các phần tử của S là: 0+1+2=3

Chọn đáp án D.

 

 

 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, mặt phẳng nào trong các mặt phẳng sau song song với trục Oz?

Xem đáp án » 26/04/2020 28,173

Câu 2:

Tất cả các nguyên hàm của hàm số f(x)=sin5x là

Xem đáp án » 26/04/2020 22,363

Câu 3:

Cho hàm số y=f(x). Hàm số y=f '(x) có bảng biến thiên như hình vẽ dưới

Giá trị lớn nhất của hàm số g(x)=f(2x)-sin2x trên [-1;1]

Xem đáp án » 27/04/2020 14,568

Câu 4:

Cho các số phức z1,z2 thỏa mãn z1=z2=3 và z1-z2=2. Môđun z1+z2 bằng

Xem đáp án » 27/04/2020 14,480

Câu 5:

Trong không gian Oxyz, cho đường thẳng : x1=y2=z-1 và mặt phẳng α: x-y+2z=0. Góc giữa đường thẳng  và mặt phẳng α bằng

Xem đáp án » 26/04/2020 12,277

Câu 6:

Một biển quảng cáo có dạng hình elip với bốn đỉnh A1,A2,B1,B2 như hình vẽ bên. Người ta chia elip bởi parabol có đỉnh B1, trục đối xứng B1B2 và đi qua các điểm M, N. Sau đó sơn phần tô đậm với giá 200.000 đồng/ m2 và trang trí đen led phần còn lại với giá 500.000 đồng/ m2 . Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A1A2=4m, B1B2=2m,MN=2m.

Xem đáp án » 27/04/2020 10,840

Câu 7:

Giả sử hàm  f có đạo hàm cấp n trên R,nN* f(1-x)+x2f''(x)=2x với mọi x. Tính tích phân I=01xf'(x)dx  

Xem đáp án » 27/04/2020 7,665

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store