Câu hỏi:

27/04/2020 1,536

Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z1,z2 thỏa mãn đồng thời các phương trình z-1=z-i và z+2m=m+1. Tổng tất cả các phần tử của S

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1 (cách hình học): Gọi M(x;y)x.y là điểm biểu diễn của số phức z thỏa mãn yêu cầu bài toán.

Có: z+2m=m+10 

TH1: m+1=0m=-1z=2 (loại) vì không thỏa mãn phương trình: z-1=z-i 

TH2: m+1>0m>-1 

Theo bài ra ta có:

z-1=z-iz+2m=m+1x-1+yi=x+y-1ix+2m+yi=m+1x-12+y2=x2+y-12x+2m2+y2=m+12x-y=01x+2m2+y2=m+122*

Từ (1) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường thẳng: (): x-y=0 

Từ (2) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường tròn

(C): Tâm I(-2m;0)bk R=m+1 

Khi đó: M(C) số giao điểm M chính là số nghiệm của hệ phương trình (*).

Để tồn tại hai số phức phân biệt z1,z2 thỏa mãn ycbt (C) cắt  tại hai điểm phân biệt

dI,<R-2m2<m+1m+1>0-m+1<2m<m+1m+1>01-2<m<1+2m>-1

mmS0;1;2. Vậy tổng các phần tử của S là 0+1+2=3.

 

Cách 2 (cách đại số):

Giả sử: z=x+yix;y 

Có: z+2m=m+10

TH1: m+1=0m=-1z=2 (loại) vì không thỏa mãn phương trình: z-1=z-i 

TH2: m+1>0m>-1 (1)

Theo bài ra ta có:

z-1=z-iz+2m=m+1x-1+yi=x+y-1ix+2m+yi=m+1x-12+y2=x2+y-12x+2m2+y2=m+12y=xx+2m2+x2=m+12y=x2x2+4mx+3m2-2m+1=0*

Để tồn tại hai số phức phân biệt z1,z2 thỏa mãn ycbt PT (*) có 2 nghiệm phân biệt

'=4m2-2(3m2-2m-1)=2-m2+2m+1>01-2<m<1+2(2)

Kết hợp điều kiện (1) và (2), mmS=0;1;2

Vậy tổng các phần tử của S là: 0+1+2=3

Chọn đáp án D.

 

 

 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian Oxyz, mặt phẳng nào trong các mặt phẳng sau song song với trục Oz?

Lời giải

Ta có trục Oz có véctơ chỉ phương là k=(0;0;1) 

Gọi n(α)=(0;0;1), nP=(1;1;0)

nQ=1;11;0, nβ=0;0;1

lần lượt là véctơ pháp tuyến của các mặt phẳng α,P,Q,β 

Nhận thấy nα.k=0.0+0.0+1.1=1#0

nβ.k=0.0+0.0+1.1=1#0 nên ta loại A và D.

Nhận thấy nP.k=1.0+1.0+0.1=0

OOzPOzP nên ta loại B.

Chọn đáp án C.

Câu 2

Tất cả các nguyên hàm của hàm số f(x)=sin5x là

Lời giải

Ta có

sin5xdx=15sin5xd(5x)=-15cos5x+C 

Chọn đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay