Câu hỏi:

27/04/2020 4,309

Cho hình chóp cụt đều ABCD.A'B'C'D' có cạnh đáy là a và 2a chiều cao của mặt bên là a. Tính đọ dài cạnh bên và chiều cao hình chóp cụt

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Kẻ A'H ⊥ AB.

Ta có K là trung điểm của AB, I là trung điểm của A'B'. O và O' là tâm của hai hình vuông đáy.

Ta có: A'I =a/2 ; AK = a ⇒ AH =a/2

Áp dụng định lí Pi-ta-go vào tam giác vuông AA'H, ta có:

A'A2=A'H2+AH2=a2+a2/4=5a2/4

Suy ra: AA' = 5a2/4

Kẻ IE ⊥ OK, ta có: OK = a ⇒ EK = a/2

Áp dụng định lí Pi-ta-go vào tam giác vuông IEK, ta có:

IK2=IE2+EK2

Suy ra: IE2=IK2-EK2=a2-a/22=3a2/4

Vậy IE = 3a2/4

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: V = 1/3 .S.h mà V = 126 (cm3) ,h = 6cm nên :

      126 = 1/3 .S.6 ⇒ S = 126 :2 = 63 (cm2)

Vậy chọn đáp án C

Lời giải

Xét hình chóp cụt đều ABCD.A'B'C'D' như hình bs.19.

Gọi M, M' thứ tự là trung điểm của BC, B'C'. Khi đó MM' là đường cao của hình thang cân BCC'B'.

Do đó diện tích xung quanh của hình chóp cụt đều là:

Sxq = 4.(a+b)/2.MM′=(2a+2b).MM′

Từ giả thiết ta có:

(2a+2b).MM′=a2+b2 Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O'). Trong mặt phẳng (OMM'O'), kẻ MH ⊥ O'M'. Khi đó: HM' = O'M' – O'H = (b−a)/2

Trong tam giác vuông MHM' ta có: MM'2=MH2+HM'2=h+b-a/22 (2)

Từ (1) và (2) suy ra :

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP