Câu hỏi:

27/04/2020 3,518

Một con kiến đang ở vị trí M là trung điểm cạnh A'D' của một chiếc hộp hình lập phương ABCD.A'B'C'D' (h. bs.16). Con kiến muốn bò qua sáu mặt của chiếc hộp rồi quay trở về M. Tìm đường đi ngắn nhất của con kiến.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trải 6 mặt của hình lập phương ABCD.A'B'C'D' như hình bs.18a. Để đi đường ngắn nhất từ M đến M' (M' chính là trung điểm của A'D' trên mặt khai triển) thì con kiến cần bò theo đoạn thẳng MM'. Trên chiếc hộp, đường đi ngắn nhất của con kiến là đường MNPQKZM' như ở hình bs.18b (dễ thấy N, P, Q, K, Z lần lượt là trung điểm của DD', CD, BC, BB', A'B').

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: V = 1/3 .S.h mà V = 126 (cm3) ,h = 6cm nên :

      126 = 1/3 .S.6 ⇒ S = 126 :2 = 63 (cm2)

Vậy chọn đáp án C

Lời giải

Xét hình chóp cụt đều ABCD.A'B'C'D' như hình bs.19.

Gọi M, M' thứ tự là trung điểm của BC, B'C'. Khi đó MM' là đường cao của hình thang cân BCC'B'.

Do đó diện tích xung quanh của hình chóp cụt đều là:

Sxq = 4.(a+b)/2.MM′=(2a+2b).MM′

Từ giả thiết ta có:

(2a+2b).MM′=a2+b2 Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O'). Trong mặt phẳng (OMM'O'), kẻ MH ⊥ O'M'. Khi đó: HM' = O'M' – O'H = (b−a)/2

Trong tam giác vuông MHM' ta có: MM'2=MH2+HM'2=h+b-a/22 (2)

Từ (1) và (2) suy ra :

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP