Câu hỏi:

28/04/2020 479

Một tổ có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho hai người được chọn có ít nhất một nữ.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B.

Phương pháp

Tính xác suất theo định nghĩa PA=nAnΩ với n(A) là số phần tử của biến cố A, nΩ là số phấn tử

của không gian mẫu.

Cách giải:

Số phần tử của không gian mẫu nΩ=C202 

Gọi A là biến cố “Hai người được chọn có it nhất một nữ” thì A là biến cố hai người được chọn không có nữ nào, tức là ta chọn 2 người trong số 7 nam.

Khi đó nA=C72nA=C102-C72 

Xác suất để hai người được chọn có it nhất một nữ là P=C102-C72C102=815 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a, ABC=600, SA=SB=SC=a2. Tính thể tích V của khối chóp đã cho. 

Xem đáp án » 28/04/2020 23,455

Câu 2:

Tìm tất cá các giá trị thực của tham số m để hàm số y=13x3-2mx2+4x-5 đồng biến trên

Xem đáp án » 28/04/2020 21,690

Câu 3:

Có bao nhiêu số nguyên dương m sao cho đường thẳng y=x+m cắt đồ thị hàm số y=2x-1x+1 tại hai điểm phân biệt A, B và AB4? 

Xem đáp án » 28/04/2020 13,826

Câu 4:

Tìm tất cả các giá trị của tham số m để phương trình log22x+log2x-m=0 có nghiệm x0;1

Xem đáp án » 28/04/2020 12,516

Câu 5:

Cho hàm số y=fx có bảng xét dấu của đạo hàm như sau:

Hàm số y=3fx+3-x3+12x nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 28/04/2020 11,966

Câu 6:

Cho hàm số fx=x3-2x-1x2+2-mx+2. Tìm tất cá các giá trị thực của tham số m để hàm số y=fx có 5 cực trị.

Xem đáp án » 28/04/2020 9,509

Câu 7:

Cho hai số thực a, b với a>0, a1, b0. Khẳng định nào sau đây sai?

Xem đáp án » 28/04/2020 9,461
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua