Câu hỏi:

13/07/2024 9,056 Lưu

Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O vẽ đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét OAE và OCF, ta có:

OA = OC (tính chất hình bình hành)

(AOE)= (COF)(đối đỉnh)

(OAE)= (OCF)(so le trong)

Do đó: OAE = OCF (g.c.g)

⇒ OE = OF (l)

* Xét OAG và OCH, ta có:

OA = OC (tính chất hình bình hành)

(AOG) = (COH)(dối đỉnh)

(OAG) = (OCH)(so le trong).

Do đó: OAG = OCH (g.c.g)

⇒ OG = OH (2)

Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét tứ giác ABCD, ta có:

MA = MC (gt)

MB = MD (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

⇒ AD // BC và AD = BC (1)

* Xét tứ giác ACBE, ta có:

AN = NB (gt)

NC = NE (định nghĩa đối xứng tâm)

Suy ra: Tứ giác ACBE là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE // BC và AE = BC (2)

Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE

Nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có K là điểm đối xứng của H qua tâm M nên MK = MH

Xét tứ giác BHCK, ta có:

BM = MC (gt)

MK = MH (chứng minh trên)

Suy ra: Tứ giác BHCK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Suy ra: KB // CH, KC // BH

Ta có: CH ⊥ AB (gt)

Suy ra: KB ⊥ AB nên (KBA) = 900

Ta có: BH ⊥ AC (gt)

Suy ra: CK ⊥ AC nên (KCA) = 900

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP