Cho tam giác ABC có A = , điểm M thuộc cạnh BC. Vẽ điểm D đối xứng với M qua AB, vẽ điểm E đối xứng với M qua AC. Chứng minh rằng AD = AE
Câu hỏi trong đề: Giải Sách Bài Tập Toán 8 Tập 1 !!
Quảng cáo
Trả lời:
Vì D đối xứng với M qua trục AB
⇒ AB là đường trung trực của MD.
⇒ AD = AM (t/chất đường trung trực) (1)
Vì E đối xứng với M qua trục AC
⇒ AC là đường trung trực của ME
⇒ AM = AE (t/chất đường trung trực) (2)
Từ (1) và (2) suy ra: AD = AE
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi giao điểm BH với AC là D, giao điểm của CH và AB là E, H là trực tâm của ΔABC
⇒ BD ⊥ AC, CE ⊥ AB
Xét tứ giác ADHE, ta có:
(DHE) = – (A + D + E ) =
(BHC) = (DHE)(đối đỉnh)
BHC = BMC (chứng minh trên)
⇒ (BMC) = (BHC)
Suy ra: (BMC) = (DHE) =
Lời giải
B và H đối xứng qua AD.
I và A đối xứng với chính nó qua AD
Nên (AIB) đối xứng với (AIH) qua AD
⇒ (AIB) = (AIH)
Lại có: (AIH) = (DIC) ( 2 góc đối đỉnh)
Suy ra: (AIB) = (DIC)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.