Câu hỏi:

13/07/2024 2,450

Chứng minh phương trình luôn xn + a1xn-1 + a2xn-2 + ... + an-1x + an = 0 có nghiệm với n là số tự nhiên lẻ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàm số f(x) = xn + a1xn-1 + a2xn-2 + ... + an-1x + an = 0 xác định trên R

- Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên với dãy số (xn) bất kì mà xn  + ta luôn có lim f(xn) = +

Do đó, f(xn) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì f(xn) > 1 kể từ một số hạng nào đó trở đi.

Nói cách khác, luôn tồn tại số a sao cho f(a) > 1 (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên với dãy số (xn) bất kì mà xn   ta luôn có lim f(xn) =  hay lim[f(xn)] = +

Do đó, f(xn) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì f(xn) > 1 kể từ số hạng nào đó trở đi. Nói cách khác, luôn tồn tại b sao cho −f(b) > 1 hay f(b) < −1 (2)

- Từ (1) và (2) suy ra f(a).f(b) < 0

Mặt khác, f(x) hàm đa thức liên tục trên R nên liên tục trên [a; b]

Do đó, phương trình f(x) = 0 luôn có nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt Giải sách bài tập Toán 11 | Giải sbt Toán 11

Suy ra g(x) xác định trên (a;b) \ x0 và Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác, f(x) = f(x0) + L(x  x0) + (x  x0)g(x) nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy hàm số y = f(x) liên tục tại

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tập xác định của hàm số là D = R

- Nếu x ≠ √2 thì Giải sách bài tập Toán 11 | Giải sbt Toán 11

Đây là hàm phân thức hữu tỉ nên liên tục trên các khoảng (-∞; √2) và (√2; +∞)

- Tại x = √2:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy hàm số liên tục tại x = √2

Kết luận : y = f(x) liên tục trên R

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP