Câu hỏi:
02/05/2020 2,628Cho hàm số y=f(x) có đạo hám liên tục trên R và có đồ thị f '(x) như hình vẽ bên. Biết rằng Số điểm cực trị của hàm số là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét có
Vì đường thẳng y=x-1 cắt đồ thị f '(x) tại 4 điểm có hoành độ x=-1, x=1, x=2, x=3
Suy ra g(x) có ba điểm cực trị là x=-1, x=1, x=2, x=3
Theo giả thiết có nên g(x)=0 có hai nghiệm phân biệt (là nghiệm đơn hoặc bội lẻ). Vậy hàm số y=|g(x)| có tổng cộng 3 + 2 = 5 điểm cực trị.
Chọn đáp án B.
*Chú ý số điểm cực trị của hàm số y=|g(x)| bằng tổng số điểm cực trị của f(x) và số nghiệm đơn (hoặc bội lẻ) của phương trình f(x)=0
Chọn đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có bảng biến thiên như sau
Số giao điểm của đồ thị hàm số f(x) và trục hoành là
Câu 2:
Cho hàm số y=f(x) có bảng biến thiên như sau
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là
Câu 5:
Trong không gian Oxyz, đường thẳng d: cắt mặt phẳng (Oxy) tại điểm có tọa độ là
Câu 6:
Trong không gian Oxyz, cho vecto và điểm A(4;6;-3). Tìm tọa độ điểm B thỏa mãn
Câu 7:
Cho đường cong và đường thẳng y = m cắt (C) tại hai điểm phân biệt nằm trong góc phần tư thứ nhất của hệ trục toạ độ Oxy và chia thành 2 miền phẳng (gạch sọc và kẻ carô) có diện tích bằng nhau (tham khảo hình vẽ bên). Mệnh đề nào dưới đây đúng ?
về câu hỏi!