Câu hỏi:

11/07/2024 964

Hãy kiểm tra xem mỗi cặp số sau có phải là một nghiệm của hệ phương trình tương ứng hay không? 

 (1,5; 2), (3; 7) 10x-3y=9-5x+1,5y=-4,5

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* Thay x = 1,5, y = 2 vào từng phương trình của hệ:

10.1,5 – 3.2 = 15 – 6 = 9

-5.1,5 + 1,5.2 = -7,5 + 3 = -4,5

Vậy (1,5; 2) là nghiệm của hệ phương trình 10x-3y=9-5x+1,5y=-4,5

* Thay x = 3, y = 7 vào từng phương trình của hệ:

10.3 – 3.7 = 30 – 21 = 9

-5.3 + 1,5.7 = -15 + 10,5 = -4,5

Vậy (3; 7) là nghiệm của hệ phương trình 10x-3y=9-5x+1,5y=-4,5

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vẽ đường thẳng (d1) là đồ thị hàm số y = -x + 2

Cho x = 0 thì y = 2 ⇒ (0; 2)

Cho y = 0 thì x = 2 ⇒ (2; 0)

Vẽ đường thẳng (d2) là đồ thị hàm số Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Cho x = 0 thì y = 0 ⇒ (0; 0)

Cho x = 3 thì y = -2 ⇒ (3; -2)

Hai đường thẳng (d1) và (d2) cắt nhau tại A(6; -4). Thay các giá trị x và y này vào phương trình đường thẳng (d3), ta có:

3.6 + 2.(-4) = 18 – 8 = 10.

Vậy x và y thỏa phương trình 3x + 2y = 10 nên (x; y) = (6; -4) là nghiệm của phương trình 3x + 2y = 10.

Lời giải

Ta có: 3x – 2y = 5 ⇔ Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Để được một hệ có nghiệm duy nhất thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc khác 3/2 .

Chẳng hạn: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 ⇔ -x + 2y = 4

Khi đó ta có hệ Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 có một nghiệm duy nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP