Câu hỏi:

16/05/2020 879

Hai bạn Hùng và Vương cùng tham gia một kỳ thi thử trong đó có hai môn thi trắc nghiệm là Toán và Tiếng Anh. Đề thi của mỗi môn gồm 6 mã đề khác nhau và các môn khác nhau thì mã đề cũng khác nhau. Đề thi được sắp xếp và phát cho học sinh một cách ngẫu nhiên. Tính xác suất để trong hai môn Toán và Tiếng Anh thì hai bạn Hùng và Vương có chung đúng một mã đề thi.

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Không gian mẫu là: Ω=64 

TH1: Môn Toán trùng mã đề thi môn Tiếng Anh không trùng có:

Bạn Hùng chọn 1 mã toán có 6 cách và 6 cách chọn mã môn Tiếng Anh khi đó Vương có 1 cách là phải giống Hùng mã Toán và 5 cách chọn mã Tiếng Anh có 6.1.6.5=180 cách.

TH2: Môn Tiếng Anh trùng mã đề thi môn Toán không trùng có: 6.1.6.5=180 cách.

Vậy P=180+18064=518.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chọn phát biểu sai trong các phát biểu sau

Xem đáp án » 16/05/2020 17,622

Câu 2:

Tìm khẳng định đúng trong các khẳng định sau.

Xem đáp án » 15/05/2020 14,494

Câu 3:

Cho hàm số y=fx có bảng biến thiên như sau.

Đồ thị hàm số y=fx2017+2018 có bao nhiêu điểm cực trị?

Xem đáp án » 15/05/2020 10,255

Câu 4:

Cho hàm số y=lnx23x. Tập nghiệm S của phương trình f'x=0 là:

Xem đáp án » 15/05/2020 6,265

Câu 5:

Đường thẳng y=4x-1 và đồ thị hàm số y=x33x21 có bao nhiêu điểm chung?

Xem đáp án » 16/05/2020 4,996

Câu 6:

Một cấp số cộng có số hạng đầu u1= 2018 công sai d=5. Hỏi bắt đầu từ số hạng nào của cấp số cộng đó thì nó nhận giá trị âm.

Xem đáp án » 15/05/2020 4,386

Câu 7:

Cho hàm số fx liên tục trên đoạn a;b và có đạo hàm trên khoảng a;b 

Cho các khẳng định sau:

i) Tồn tại một số ca;b sao cho f'c=fbfaba. 

ii) Nếu fa=fb thì luôn tồn tại ca;b sao cho f'c=0. 

iii) Nếu fx có hai nghiệm phân biệt thuộc khoảng a;b thì giữa hai nghiệm đó luôn tồn tại một nghiệm của phương trình f'x=0. 

Số khẳng định đúng trong ba khẳng định trên là

Xem đáp án » 16/05/2020 4,302

Bình luận


Bình luận