Đăng nhập
Đăng ký
1776 lượt thi 50 câu hỏi 90 phút
Câu 1:
Cho tập hợp A có n phần tử n>4. Biết rằng số tập con của A có 8 phần tử nhiều gấp 26 lần số tập con của A có 4 phần tử. Hãy tìm k∈1,2,3,..., n sao cho số tập con gồm k phần tử của A là nhiều nhất.
A. k=20
B.k=11
C. k=14
D. k=10
Câu 2:
Cho hình hộp ABCD.A’B’C’D’ . Trên các cạnh AA'; BB'; CC' lần lượt lấy ba điểm M, N, P sao cho A'MA A'=13;B'NBB'=23;C'PCC'=12. Biết mặt phẳng MNP cắt cạnh DD' tại Q. Tính tỉ số D'QD D'.
A. 16
B. 13
C. 56
D. 23
Câu 3:
Một cấp số cộng có số hạng đầu u1= 2018 công sai d=−5. Hỏi bắt đầu từ số hạng nào của cấp số cộng đó thì nó nhận giá trị âm.
A. u406
B. u403
C. u405
D. u404
Câu 4:
Số đường tiệm cận của đồ thị hàm số y=2018−x2xx−2018 là
A. 2
B. 0
C. 1
D. 3
Câu 5:
Cho hàm số y=lnx2−3x. Tập nghiệm S của phương trình f'x=0 là:
A. S=∅
B. S=32
C. S=0;3
D. S=−∞;0∪3;+∞
Câu 6:
Cường độ của ánh sáng I khi đi qua môi trường khác với không khí , chẳng hạn như sương mù hay nước, ... sẽ giảm dần tùy theo độ dày của môi trường và một hằng số μ gọi là khả năng hấp thu ánh sáng tùy theo bản chất môi trường mà ánh sáng truyền đi và được tính theo công thức I=I0.e−μx với x là độ dày của môi trường đó và tính bằng mét, I0 là cường độ ánh sáng tại thời điểm trên mặt nước. Biết rằng nước hồ trong suốt có μ=1,4 . Hỏi cường độ ánh sáng giảm đi bao nhiêu lần khi truyền trong hồ đó từ độ sâu 3m xuống đến độ sâu 30m
( chọn giá trị gần đúng với đáp số nhất)
A. e30 lần
B. 2,6081.1016 lần
C. e27 lần
D. 2,6081.10−16 lần
Câu 7:
Biết rằng các số thực a, b thay đổi sao cho hàm số fx=−x3+x+a3+x+b3 luôn đồng biến trên khoảng−∞;+∞ . Tìm giá trị nhỏ nhất của biểu thức P=a2+b2−4a−4b+2.
A. −4
B. −2
C. 0
D. 2
Câu 8:
Cho tam giác ABC cân tại A. Biết rằng độ dài cạnh BC, trung tuyến AM và độ dài cạnh AB theo thứ tự đó lập thành một cấp số nhân có công bội q. Tìm công bội q của cấp số nhân đó.
A. q=1+22
B. q=2+222
C. q=−1+22
D. q=−2+222
Câu 9:
Một cấp số cộng có tổng của n số hạng đầu Sntính theo công thức Sn=5n2+3n,n∈ℕ*. Tìm số hạng đầu u1 và công sai d của cấp số cộng đó.
A. u1=−8;d=10
B. u1=−8;d=−10
C. u1=8;d=10
D. u1=8;d=−10
Câu 10:
Trên mặt phẳng Oxy ta xét một hình chữ nhật ABCD với các điểm A−2;0,B−2;2,C4;2,D4;0. Một con châu chấu nhảy trong hình chữ nhật đó tính cả trên cạnh hình chữ nhật sao cho chân nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên( tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để nó đáp xuống các điểm Mx; y mà x+y<2.
A. 37
B. 821
C. 13
D. 47
Câu 11:
Tập nghiệm S của phương trình 47x743x−1−1649=0 là
A. S=−12
B. S=2
C. S=12;−12
D. S=−12;2
Câu 12:
Tâm đối xứng I của đồ thị hàm số y=−2x−1x+1 là
A. I1;−2
B. I−1;−2
C. I1;2
D. I−1;2
Câu 13:
Trong mặt phẳng P cho tam giác XYZ cố định . Trên đường thẳng d vuông góc với mặt phẳng P tại điểm X và về hai phía của P ta lấy hai điểm A,B thay đổi sao cho hai mặt phẳng AYZ và BYZ luôn vuông góc với nhau. Hỏi vị trí của A,B thỏa mãn điều kiện nào sau đây thì thể tích tứ diện ABYZ là nhỏ nhất.
A. XB=2XA
B. XA=2XB
C. XA.XB=YZ2
D. X là trung điểm của đoạn AB
Câu 14:
Tính tổng S=C20181009+C20181010+C20181011+...+C20182018 (trong tổng đó, các số hạng có dạng C2018k với k nguyên dương nhận giá trị liên tục từ 1009 đến 2018 ).
A. S=22018−C20181009
B. S=22017+12C20181009
C. S=22017−12C20181009
D. S=22017−C20181009
Câu 15:
Biết rằng log7=a,log5100=b.Hãy biểu diễn log2556theo a và b.
A. ab+3b+64
B. ab+b−64
C. ab+3b−64
D. ab−3b−64
Câu 16:
Trên mặt phẳng có 2017 đường thẳng song song với nhau và 2018 đường thẳng song song khác cùng cắt nhóm 2017 đường thẳng đó. Đếm số hình bình hành nhiều nhất được tạo thành có đỉnh là các giao điểm nói trên.
A. 2017.2018
B. C20174+C20184
C. C20172.C20182
D. 2017+2018
Câu 17:
Tìm khẳng định đúng trong các khẳng định sau.
A. Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó nằm trong mặt phẳng đó.
B. Nếu hai mặt phẳng cùng song song với mặt phẳng thứ ba thì chúng song song với nhau.
C. Nếu ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến thì ba giao tuyến đó phải đồng quy.
D. Trong không gian, hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì hai đường thẳng đó song song với nhau.
Câu 18:
Đạo hàm của hàm số fx=lnlnx trên tập xác định của nó là:
A. f'x=12lnlnx
B. f'x=1lnlnx
C. f'x=12xlnlnx
D. f'x=12xlnxlnlnx
Câu 19:
Gọi a là một nghiệm của phương trình 4.22logx−6logx−18.32logx=0. Khẳng định nào sau đây đúng khi đánh giá về a ?
A. a−102=1
B. a2+a+1=2
C. a cũng là nghiệm của phương trình 23logx=94
D. a=102
Câu 20:
Trên một bàn cờ vua kích thước 8x8 người ta đặt số hạt thóc theo cách như sau. Ô thứ nhất đặt một hạt thóc, ô thứ hai đặt hai hạt thóc, các ô tiếp theo đặt số hạt thóc gấp đôi ô đứng liền kề trước nó. Hỏi phải tối thiểu từ ô thứ bao nhiêu để tổng số hạt thóc từ ô đầu tiên đến ô đó lớn hơn 20172018 hạt thóc?
A. 26
B. 23
C. 24
D. 25
Câu 21:
Biết rằng đồ thị của hàm số y=Px=x3−2x2−5x+2 cắt trục hoành tại ba điểm phân biệt lần lượt có hoành độ là x1,x2,x3. Khi đó giá trị của biểu thức T=1x12−4x1+3+1x22−4x2+3+1x32−4x3+3 bằng
A. T=12−P'1P1+P'3P3
B. T=12−P'1P1−P'3P3
C. T=12P'1P1−P'3P3
D. T=12P'1P1+P'3P3
Câu 22:
Cho hàm số y=fx có bảng biến thiên như sau.
Đồ thị hàm số y=fx−2017+2018 có bao nhiêu điểm cực trị?
B. 3
C. 5
D. 4
Câu 23:
Cho hàm số y=x4−4x2+3. Tìm khẳng định sai.
A. Hàm số chỉ có một điểm cực trị.
B. Đồ thị của hàm số nhận trục tung làm trục đối xứng.
C. Hàm số đã cho là hàm số chẵn.
D. Các điểm cực trị của đồ thị hàm số tạo thành một tam giác cân
Câu 24:
Khẳng định nào sau đây là sai khi kết luận về hình tứ diện đều?
A. Đoạn thẳng nối trung điểm của cặp cạnh đối diện cũng là đoạn vuông góc chung của cặp cạnh đó
B. Thể tích của tứ diện bằng một phần ba tích khoảng cách từ trọng tâm của tứ diện đến một mặt với diện tích toàn phần của nó (diện tích toàn phần là tổng diện tích của bốn mặt).
C. Các cặp cạnh đối diện dài bằng nhau và vuông góc với nhau.
D. Hình tứ diện đều có một tâm đối xứng cũng chính là trọng tâm của nó.
Câu 25:
Cho biểu thức fx=12018x+2018.
Tính tổng S=2018f−2017+f−2016+...+f0+f1+...+f2018.
A. S=2018
B. S=12018
C. S=2018
D. S=12018
Câu 26:
Cho fx là một hàm số liên tục trên đoạn −1;8, biết f1=f3=f8=2 có bảng biến thiên như sau:
Tìm m để phương trình fx=fm có ba nghiệm phân biệt thuộc đoạn −1;8.
A. m∈−1;8\−1;3;5
B. m∈−1;8\1;3 và m≠5
C. m∈−1;8
D. m∈−1;8\1;3 và m≠5
Câu 27:
Cho hàm số fx=x3−3x+1.Tìm khẳng định đúng.
A. Đồ thị hàm số có đường tiệm cận ngang
B. Điểm cực đại của đồ thị hàm số M1;−1.
C. Hàm số đồng biến trên các khoảng −∞;−1và1;+∞;.
D. Hàm số không có cực trị.
Câu 28:
Đường thẳng y=4x-1 và đồ thị hàm số y=x3−3x2−1 có bao nhiêu điểm chung?
A. 1
Câu 29:
Cho hình chóp tứ giác S.ABCD và một mặt phẳng (P) thay đổi. Thiết diện của hình chóp cắt bởi mặt phẳng (P) là một đa giác có số cạnh nhiều nhất có thể là
A. 5
B. 4
C. 3
D. 6
Câu 30:
Một kim tự tháp Ai Cập được xây dựng khoảng 2500 năm trước công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 150m cạnh đáy dài 220m . Hỏi diện tích xung quanh của kim tự tháp đó bằng bao nhiêu? ( Diện tích xung quanh của hình chóp là tổng diện tích của các mặt bên).
A. 220346m2
B. 1100346m2
C. 4400346+48400m2
D. 4400346m2
Câu 31:
Tìm khẳng định sai trong các khẳng định sau
A. Hàm số fx đạt cực trị tại điểm x0 thì đạo hàm tại đó không tồn tại hoặc f'x0=0
B. Hàm số fx có f'x>0,∀x∈a;b, thì hàm số đồng biến trên a; b.
C. Hàm số fx đồng biến trên đoạn a;b thì đạt giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
D. Hàm số fx liên tục trên đoạn a;b và fa.fb<0 thì tồn tại c∈a;b sao cho fc=0.
Câu 32:
Cho một hình hộp chữ nhật ABCD.A'B'C'D'. Trên các cạnh AA'; BB'; CC' ta lần lượt lấy ba điểm X;Y;Z sao cho AX=2A'X; BY=B'Y; CZ=3C'Z. Mặt phẳng XYZ cắt cạnh DD' ở tại điểm T. Khi đó tỉ số thể tích của khối XYZT.ABCD và khối XYZT.A'B'C'D' bằng bao nhiêu?
A. 724
B. 717
C. 177
D. 1724
Câu 33:
Tìm tất cả các giá trị của tham số m để hàm số fx=m2−4x3+3m−2x2+3x−4 đồng biến trên ℝ.
A. m≥2
B. m≤2
C. m>2
D. m<2
Câu 34:
Hai khối đa diện đều được gọi là đối ngẫu nếu các đỉnh của khối đa diện đều loại này là tâm (đường tròn ngoại tiếp) các mặt của khối đa diện đều loại kia. Hãy tìm khẳng định sai trong các khẳng định sau:
A. Khối tứ diện đều đối ngẫu với chính nó.
B. Hai khối đa diện đều đối ngẫu với nhau luôn có số cạnh bằng nhau.
C. Số mặt của một đa diện đều bằng số cạnh của đa diện đều đối ngẫu với nó.
D. Khối 20 mặt đều đối ngẫu với khối 12 mặt đều.
Câu 35:
Tích của giá trị lớn nhất và giá trị nhỏ nhất của hàm số fx=x+1x trên đoạn 1;4 là
B. 172
C. 174
D. 284
Câu 36:
Chọn phát biểu sai trong các phát biểu sau
A. Dãy số có tất cả các số hạng bằng nhau là một cấp số cộng.
B. Một cấp số nhân có công bội q>1 là một dãy tăng.
C. Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân.
D. Một cấp số cộng có công sai dương là một dãy tăng.
Câu 37:
Cho khối trụ có bán kính đáy R và có chiều cao h=2R. Hai đáy của khối trụ là hai đường tròn có tâm lần lượt là O và O'. Trên đường tròn (O) ta lấy điểm A cố định. Trên đường tròn (O') ta lấy điểm B thay đổi. Hỏi độ dài đoạn AB lớn nhất bằng bao nhiêu?
A. ABmax=2R2
B. ABmax=4R2
C. ABmax=4R
D. ABmax=R2
Câu 38:
Hai bạn Hùng và Vương cùng tham gia một kỳ thi thử trong đó có hai môn thi trắc nghiệm là Toán và Tiếng Anh. Đề thi của mỗi môn gồm 6 mã đề khác nhau và các môn khác nhau thì mã đề cũng khác nhau. Đề thi được sắp xếp và phát cho học sinh một cách ngẫu nhiên. Tính xác suất để trong hai môn Toán và Tiếng Anh thì hai bạn Hùng và Vương có chung đúng một mã đề thi.
A. 536
B. 59
C. 572
D. 518
Câu 39:
Cho khối hộp chữ nhật ABCD.AB’C’D’ có thể tích bằng 2016. Thể tích phần chung của hai khối A.B'CD' và A'BC'D bằng.
A. 1344
B. 336
C. 672
D. 168
Câu 40:
Cho các số thực a<b<0. Mệnh đề nào sau đây là sai ?
A. lnab=12lna+lnb
B. lnab=lna−lnb
C. lnab2=lna2−lnb2
D. lnab2=lna2+lnb2
Câu 41:
Một người mỗi tháng đều đặn gửi vào một ngân hàng một khoản tiền T theo hình thức lãi kép với lãi suất 0,6% mỗi tháng. Biết sau 15 tháng người đó có số tiền là 10 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số sau
A. 635.000 đồng
B. 645.000 đồng
C. 613.000 đồng
D. 535.000 đồng
Câu 42:
Cho hàm số fx liên tục trên đoạn a;b và có đạo hàm trên khoảng a;b
Cho các khẳng định sau:
i) Tồn tại một số c∈a;b sao cho f'c=fb−fab−a.
ii) Nếu fa=fb thì luôn tồn tại c∈a;b sao cho f'c=0.
iii) Nếu fx có hai nghiệm phân biệt thuộc khoảng a;b thì giữa hai nghiệm đó luôn tồn tại một nghiệm của phương trình f'x=0.
Số khẳng định đúng trong ba khẳng định trên là
A. 0
B. 2
D. 1
Câu 43:
Cho hàm số y=fx có đồ thị như hình vẽ. Xác định tất cả các giá trị thực của tham số m để phương trình fx=m có đúng hai nghiệm thực phân biệt.
A. m>−3
B. −4<m<0
C. m>4
D. m>4,m=0
Câu 44:
Cho khối lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB=a, AC=a3, AA'=2a. Tính bán kính R của mặt cầu ngoại tiếp khối lăng trụ đó.
A. R=2a2
B. R=a
C. R=a2
D. R=a22
Câu 45:
Cho hình chóp S.ABC. Bên trong tam giác ABC ta lấy một điểm O bất kỳ. Từ O ta dựng các đường thẳng lần lượt song song với SA, SB, SC và cắt các mặt phẳng SBC,SCA,SAB theo thứ tự tại các điểm A’ , B’ , C’ . Tính tổng tỉ số T=OA'SA+OB'SB+OC'SC.
A. T=3
B. T=34
C. T=1
D. T=13
Câu 46:
Biết đồ thị hàm số fx=a x3+bx2+cx+d cắt trục hoành tại ba điểm phân biệt có hoành độ lần lượt là x1,x2,x3. Tính giá trị của biểu thức T=1f'x1+1f'x2+1f'x3.
A. T=13
B. T=3
D. T=0
Câu 47:
Khẳng định nào dưới đây là khẳng định sai ?
A. Nếu hai mặt phẳng song song cùng cắt mặt phẳng thứ ba thì hai giao tuyến tạo thành song song với nhau
B. Ba mặt phẳng đôi một song song chắn trên hai đường thẳng chéo nhau những đoạn thẳng tương ứng tỉ lệ
C. Nếu mặt phẳng (P) song song với mặt phẳng (Q) thì mọi đường thẳng nằm trên mặt phẳng (P) đều song song với mặt phẳng (Q).
D. Nếu mặt phẳng (P) có chứa hai đường thẳng phân biệt và hai đường thẳng đó cùng song song với mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).
Câu 48:
Cho hình chóp S.ABC có SA=2, SB=3, SC=4. Góc ASB ^=45∘,BSC^=60∘,
CSA^=90∘. Tính khoảng cách từ điểm B đến mặt phẳng SAC.
A. 12
D. 32
Câu 49:
Gọi S là tập nghiệm của phương trình 2−x2+4x=6. Khi đó, số phần tử của tập S là
A. S=2
B. S=3
C. S=4
D. S=5
Câu 50:
Cho mặt trụ (T) và một điểm S cố định nằm ngoài (T). Một đường thẳng Δ luôn đi qua S và cắt (T) tại hai điểm A, B (A, B có thể trùng nhau). Gọi M là trung điểm của đoạn thẳng AB. Tập hợp các điểm M là
A. Một mặt phẳng đi qua S.
B. Một mặt cầu đi qua S.
C. Một mặt nón có đỉnh là S.
D. Một mặt trụ.
355 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com