Đề ôn luyện Toán theo Chủ đề 5. Hình học không gian (Đề số 1)
56 người thi tuần này 4.6 896 lượt thi 22 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề thi thử Tốt nghiệp THPT Toán 2025-2026 Cụm trường THPT Hà Tĩnh có đáp án
Đề thi thử Tốt nghiệp THPT Toán 2025-2026 Sở Phú Thọ có đáp án
Đề thi thử Tốt nghiệp THPT Toán 2025-2026 THPT Đồng Hỷ (Thái Nguyên) có đáp án
Đề thi thử Tốt nghiệp THPT Toán 2025-2026 THPT Chuyên Trần Phú (Hải Phòng) lần 1 có đáp án
Đề thi thử Tốt nghiệp THPT Toán 2025-2026 THPT Lê Quý Đôn (Hà Nội) lần 01 có đáp án
Đề thi thử Tốt nghiệp THPT Toán 2025-2026 THPT Nguyễn Khuyến (TP.HCM) có đáp án
Đề thi thử Tốt nghiệp THPT Toán 2025-2026 THPT Cửa Lò (Nghệ An) có đáp án
Đề thi thử Tốt nghiệp THPT Toán 2025-2026 THPT Chuyên Hạ Long lần 01 có đáp án
Danh sách câu hỏi:
Câu 1
PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hình chóp \(S.ABCD\) có đáy \[ABCD\] là hình vuông cạnh \[a\]. Cạnh bên \[SA \bot \,\left( {ABCD} \right),\] \[SA = 2a\]. Khoảng cách từ trung điểm \[M\] của \[AB\] đến mặt phẳng \[\left( {SAD} \right)\] là
Lời giải
Ta có \(MA \bot SA\,\,\left( {{\rm{do}}\,SA \bot \left( {ABCD} \right)} \right)\) và \(MA \bot AD\) nên \[MA \bot \left( {SAD} \right)\] tại \[A\].
Suy ra, khoảng cách từ trung điểm \[M\] của \[AB\] đến \[\left( {SAD} \right)\] là \[MA = \frac{{AB}}{2} = \frac{a}{2}\]. Chọn B.
Câu 2
Lời giải
|
Đặt \(OA = OB = OC = a\). Suy ra \(AB = BC = AC = a\sqrt 2 \). Gọi \(N\) là trung điểm \(AC\) ta có \(MN{\rm{//}}AB\) và \(MN = \frac{{a\sqrt 2 }}{2}\). Suy ra \[\left( {OM,AB} \right) = \left( {OM,MN} \right)\]. Xét tam giác \(OMN\) có \(ON = OM = MN = \frac{{a\sqrt 2 }}{2}\). Do đó, \(\Delta OMN\) là tam giác đều. Suy ra \(\widehat {OMN} = 60^\circ \). |
![]() |
Vậy \[\left( {OM,AB} \right) = \left( {OM,MN} \right) = \widehat {OMN} = 60^\circ \]. Chọn C.
Câu 3
Lời giải
Gọi \(O\) là tâm của \(ABCD\) suy ra \(SO \bot \left( {ABCD} \right)\).
Ta có \(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{a}{{\sqrt 2 }}\). Chọn A.
Câu 4
Lời giải

Ta kẻ \(CH \bot AB,\,H \in \,AB\).
\( \Rightarrow \left\{ \begin{array}{l}CH \bot AB\\CH \bot SA\end{array} \right. \Rightarrow CH \bot \left( {SAB} \right)\).
Vậy \(SH\) là hình chiếu vuông góc của đoạn thẳng \(SC\) trên mặt phẳng \(\left( {SAB} \right)\).
Khi đó \(\left( {SC,\left( {SAB} \right)} \right) = \left( {SC,\,SH} \right) = \widehat {CSH}\).
Ta có \[CH = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \], \(SH = \sqrt {S{A^2} + A{H^2}} = \sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {a^2}} = a\sqrt 3 \).
Xét tam giác \(SHC\) vuông tại \(H\) ta có: \(\tan \widehat {CSH} = \frac{{CH}}{{SH}} = \frac{{a\sqrt 3 }}{{a\sqrt 3 }} = 1 \Rightarrow \widehat {CSH} = 45^\circ \).
Vậy \(\left( {SC,\,\left( {SAB} \right)} \right) = 45^\circ \). Chọn B.
Câu 5
Lời giải

Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AD\).
Ta có \[\left\{ \begin{array}{l}SA \bot AD\\AB \bot AD\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right)\]\[ \Rightarrow d\left( {D,\,\left( {SAB} \right)} \right) = DA\].
Lại có \[\left\{ \begin{array}{l}CD \not\subset \left( {SAB} \right)\\CD\,\,{\rm{//}}\,AB\\AB \subset \left( {SAB} \right)\end{array} \right. \Rightarrow CD\,{\rm{//}}\,\left( {SAB} \right)\].
\[ \Rightarrow d\left( {CD,\,SB} \right)\]\[ = d\left( {CD,\,\left( {SAB} \right)} \right)\]\[ = d\left( {D,\,\left( {SAB} \right)} \right) = DA = a\]. Chọn A.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

