Câu hỏi:
17/06/2025 23
Cho hình chóp \[S.ABC\], có \(SA = SB = SC\), đáy là tam giác đều cạnh bằng \(7\). Biết thể tích khối chóp \[S.ABC\] bằng \(\frac{{343\sqrt 3 }}{3}\). Tính khoảng cách giữa hai đường thẳng \(SA\) và \(BC\).
Cho hình chóp \[S.ABC\], có \(SA = SB = SC\), đáy là tam giác đều cạnh bằng \(7\). Biết thể tích khối chóp \[S.ABC\] bằng \(\frac{{343\sqrt 3 }}{3}\). Tính khoảng cách giữa hai đường thẳng \(SA\) và \(BC\).
Quảng cáo
Trả lời:
Do hình chóp \[S.ABC\] đều nên \(SG\) là đường cao của hình chóp (\(G\) là trọng tâm tam giác đều \(ABC\)). Kẻ \(MH \bot SA\) tại \(H\) thì \(MH\) là đoạn vuông góc chung của \(SA\) và \(BC\).
Vậy khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng \(MH\).
Do \(\Delta ABC\) đều nên \(AM = \frac{{AB\sqrt 3 }}{2} = \frac{{7\sqrt 3 }}{2}\).
Suy ra \(AG = \frac{2}{3}AM = \frac{{7\sqrt 3 }}{3}\).
Ta có \({V_{S.ABC}} = \frac{1}{3} \cdot \frac{{{7^2}\sqrt 3 }}{4} \cdot SG = \frac{{343\sqrt 3 }}{3}\)\( \Rightarrow SG = 28\).
Lại có \(SA = \sqrt {A{G^2} + S{G^2}} = \frac{{49\sqrt 3 }}{3}\).
Ta có \(\Delta AHM\) đồng dạng với \(\Delta AGS\)\( \Rightarrow \frac{{AM}}{{SA}} = \frac{{MH}}{{SG}} \Rightarrow MH = \frac{{SG \cdot AM}}{{SA}} = \frac{{3 \cdot 28 \cdot 7\sqrt 3 }}{{2 \cdot 49\sqrt 3 }} = 6\).
Đáp án: \(6\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(AA' = \sqrt {A'{B^2} - A{B^2}} = a\sqrt 2 \).
Diện tích tam giác \(ABC\) là: \({S_{ABC}} = \frac{1}{2}A{B^2} = \frac{{{a^2}}}{2}\).
Thể tích khối lăng trụ là \(V = AA' \cdot {S_{ABC}} = \frac{{{a^3}\sqrt 2 }}{2}\). Chọn D.
Lời giải
Ta có \(SI\) vuông góc với đáy \(\left( {ABCD} \right)\) và \(BC = \sqrt {{{\left( {2a} \right)}^2} + {a^2}} = a\sqrt 5 \).
Vẽ \[IH \bot CB\] tại \[H\].
Do đó, \(IH\) là hình chiếu của \(SH\) lên mặt phẳng \(\left( {ABCD} \right)\) nên \[SH \bot CB\] (theo định lý ba đường vuông góc).
Khi đó, \[\widehat {SHI}\] là góc phẳng nhị diện của góc nhị diện \(\left[ {S,BC,D} \right]\).
Ta có \[{S_{ICB}} = {S_{ABCD}} - {S_{IDC}} - {S_{AIB}}\]\[ = 3{a^2} - \frac{{{a^2}}}{2} - {a^2} = \frac{{3{a^2}}}{2}\]\[ \Rightarrow IH \cdot CB = 3{a^2}\]\[ \Rightarrow IH = \frac{{3a\sqrt 5 }}{5}\].
Ta có \[\tan \widehat {SHI} = \frac{{SI}}{{IH}}\]\[ = \frac{{\frac{{3a\sqrt 5 }}{5}}}{{\frac{{3a\sqrt 5 }}{5}}} = 1\]\[ \Rightarrow \widehat {SHI} = 45^\circ \].
Đáp án: \[45\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.