Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\). Biết số đo góc nhị diện \(\left[ {A,BC,S} \right]\) bằng \(45^\circ \). Tỉ số diện tích của hai tam giác \(SBC\) và \(ABC\) bằng
Quảng cáo
Trả lời:
Kẻ \(AH \bot BC\,\,\left( {H \in BC} \right)\).
Vì \(SA \bot \left( {ABC} \right)\) nên \(BC \bot SA \Rightarrow BC \bot \left( {SAH} \right) \Rightarrow BC \bot SH\).
Suy ra \(\widehat {SHA}\) là góc phẳng nhị diện \(\left[ {A,BC,S} \right]\) và \(\widehat {SHA} = 45^\circ \).
Khi đó \(\Delta SAH\) vuông cân tại \(A\) và \(SH = AH\sqrt 2 \).
Diện tích tam giác \(ABC\): \({S_{ABC}} = \frac{1}{2}AH \cdot BC\).
Diện tích tam giác \(SBC\): \({S_{SBC}} = \frac{1}{2}SH \cdot BC\).
Khi đó \(\frac{{{S_{SBC}}}}{{{S_{ABC}}}} = \frac{{SH}}{{AH}} = \sqrt 2 \). Chọn A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(H,K\) lần lượt là hình chiếu vuông góc của \(O,B\) trên mặt phẳng \(\left( {SCD} \right)\).
Khi đó góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {SCD} \right)\) là góc \(\widehat {BSK} = \varphi \).
Ta có \(\sin \varphi = \frac{{BK}}{{BS}}\). Mặt khác \(BK{\rm{//}}\,OH\) và \(\frac{{BK}}{{OH}} = \frac{{BD}}{{OD}} = 2\).
Kẻ \(OM \bot CD\), trong tam giác vuông \(SOM\) có \(\frac{1}{{O{H^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)
Ta có \(\Delta SBO = \Delta CBO\) suy ra \(CO = SO = \frac{{a\sqrt 6 }}{3}\) và \(OB = \sqrt {S{B^2} - S{O^2}} = \frac{{a\sqrt 3 }}{3}\).
Þ\(\frac{1}{{O{H^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 6 }}{3}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 6 }}{3}} \right)}^2}}}\) Þ \(OH = \frac{a}{{\sqrt 6 }}\).
Þ\(BK = 2OH = \frac{{2a}}{{\sqrt 6 }}\)Þ\(\sin \varphi = \frac{{\frac{{2a}}{{\sqrt 6 }}}}{a} = \frac{2}{{\sqrt 6 }}\). Suy ra \(\varphi \approx 55^\circ \).
Đáp án: \(55\).
Lời giải
Do hình chóp \[S.ABC\] đều nên \(SG\) là đường cao của hình chóp (\(G\) là trọng tâm tam giác đều \(ABC\)). Kẻ \(MH \bot SA\) tại \(H\) thì \(MH\) là đoạn vuông góc chung của \(SA\) và \(BC\).
Vậy khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng \(MH\).
Do \(\Delta ABC\) đều nên \(AM = \frac{{AB\sqrt 3 }}{2} = \frac{{7\sqrt 3 }}{2}\).
Suy ra \(AG = \frac{2}{3}AM = \frac{{7\sqrt 3 }}{3}\).
Ta có \({V_{S.ABC}} = \frac{1}{3} \cdot \frac{{{7^2}\sqrt 3 }}{4} \cdot SG = \frac{{343\sqrt 3 }}{3}\)\( \Rightarrow SG = 28\).
Lại có \(SA = \sqrt {A{G^2} + S{G^2}} = \frac{{49\sqrt 3 }}{3}\).
Ta có \(\Delta AHM\) đồng dạng với \(\Delta AGS\)\( \Rightarrow \frac{{AM}}{{SA}} = \frac{{MH}}{{SG}} \Rightarrow MH = \frac{{SG \cdot AM}}{{SA}} = \frac{{3 \cdot 28 \cdot 7\sqrt 3 }}{{2 \cdot 49\sqrt 3 }} = 6\).
Đáp án: \(6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.