Đề ôn luyện Toán theo Chủ đề 5. Hình học không gian (Đề số 1)
35 người thi tuần này 4.6 35 lượt thi 22 câu hỏi 60 phút
🔥 Đề thi HOT:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 11)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hình chóp \(S.ABCD\) có đáy \[ABCD\] là hình vuông cạnh \[a\]. Cạnh bên \[SA \bot \,\left( {ABCD} \right),\] \[SA = 2a\]. Khoảng cách từ trung điểm \[M\] của \[AB\] đến mặt phẳng \[\left( {SAD} \right)\] là
Lời giải
Ta có \(MA \bot SA\,\,\left( {{\rm{do}}\,SA \bot \left( {ABCD} \right)} \right)\) và \(MA \bot AD\) nên \[MA \bot \left( {SAD} \right)\] tại \[A\].
Suy ra, khoảng cách từ trung điểm \[M\] của \[AB\] đến \[\left( {SAD} \right)\] là \[MA = \frac{{AB}}{2} = \frac{a}{2}\]. Chọn B.
Lời giải
Đặt \(OA = OB = OC = a\). Suy ra \(AB = BC = AC = a\sqrt 2 \). Gọi \(N\) là trung điểm \(AC\) ta có \(MN{\rm{//}}AB\) và \(MN = \frac{{a\sqrt 2 }}{2}\). Suy ra \[\left( {OM,AB} \right) = \left( {OM,MN} \right)\]. Xét tam giác \(OMN\) có \(ON = OM = MN = \frac{{a\sqrt 2 }}{2}\). Do đó, \(\Delta OMN\) là tam giác đều. Suy ra \(\widehat {OMN} = 60^\circ \). |
![]() |
Vậy \[\left( {OM,AB} \right) = \left( {OM,MN} \right) = \widehat {OMN} = 60^\circ \]. Chọn C.
Lời giải
Gọi \(O\) là tâm của \(ABCD\) suy ra \(SO \bot \left( {ABCD} \right)\).
Ta có \(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{a}{{\sqrt 2 }}\). Chọn A.
Lời giải
Ta kẻ \(CH \bot AB,\,H \in \,AB\).
\( \Rightarrow \left\{ \begin{array}{l}CH \bot AB\\CH \bot SA\end{array} \right. \Rightarrow CH \bot \left( {SAB} \right)\).
Vậy \(SH\) là hình chiếu vuông góc của đoạn thẳng \(SC\) trên mặt phẳng \(\left( {SAB} \right)\).
Khi đó \(\left( {SC,\left( {SAB} \right)} \right) = \left( {SC,\,SH} \right) = \widehat {CSH}\).
Ta có \[CH = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \], \(SH = \sqrt {S{A^2} + A{H^2}} = \sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {a^2}} = a\sqrt 3 \).
Xét tam giác \(SHC\) vuông tại \(H\) ta có: \(\tan \widehat {CSH} = \frac{{CH}}{{SH}} = \frac{{a\sqrt 3 }}{{a\sqrt 3 }} = 1 \Rightarrow \widehat {CSH} = 45^\circ \).
Vậy \(\left( {SC,\,\left( {SAB} \right)} \right) = 45^\circ \). Chọn B.
Lời giải
Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AD\).
Ta có \[\left\{ \begin{array}{l}SA \bot AD\\AB \bot AD\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right)\]\[ \Rightarrow d\left( {D,\,\left( {SAB} \right)} \right) = DA\].
Lại có \[\left\{ \begin{array}{l}CD \not\subset \left( {SAB} \right)\\CD\,\,{\rm{//}}\,AB\\AB \subset \left( {SAB} \right)\end{array} \right. \Rightarrow CD\,{\rm{//}}\,\left( {SAB} \right)\].
\[ \Rightarrow d\left( {CD,\,SB} \right)\]\[ = d\left( {CD,\,\left( {SAB} \right)} \right)\]\[ = d\left( {D,\,\left( {SAB} \right)} \right) = DA = a\]. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.