Câu hỏi:

17/06/2025 57 Lưu

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A\)\(AC = a\). Hình chiếu vuông góc của \(S\) lên \(\left( {ABC} \right)\) là trung điểm \(H\) của \(BC\). Mặt phẳng \(\left( {SAB} \right)\) tạo với \(\left( {ABC} \right)\) một góc \(60^\circ \).

a)  Gọi \(M\) là trung điểm cạnh \(AB\). Khi đó, \(MH \bot AB.\)

b) Số đo \[\widehat {SMH}\] bằng \(60^\circ \).

c) Gọi \(K\) là hình chiếu của \(H\) lên \(SM\). Khi đó, \(HK = \frac{{a\sqrt 3 }}{2}\).

d) Gọi \(I\) là trung điểm \(SC\). Khoảng cách từ \(I\) đến mặt phẳng \(\left( {SAB} \right)\) bằng \(\frac{{a\sqrt 3 }}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(M\) là trung điểm cạnh \(AB\) thì \(MH\) là đường trung bình của tam giác \(ABC\) nên

\(MH = \frac{a}{2},MH{\rm{//}}AC\)\( \Rightarrow MH \bot AB\).

C (ảnh 1)

Ta có \(SH \bot \left( {ABC} \right) \Rightarrow SH \bot AB\) và \(MH \bot AB\) nên \(\left( {SMH} \right) \bot AB \Rightarrow SM \bot AB\).

Suy ra góc giữa \(\left( {SAB} \right)\) và \(\left( {ABC} \right)\) là góc giữa \(SM\) và \(MH\); lại có \(SH \bot MH\) nên góc này bằng \[\widehat {SMH}\]. Từ giả thiết suy ra \[\widehat {SMH} = 60^\circ \].

Có \(K\) là hình chiếu của \(H\) lên \(SM\)thì \(HK \bot \left( {SAB} \right)\).

Xét tam giác vuông \(\Delta SHM\) có, \(SH = MH \cdot \tan 60^\circ  = \frac{{a\sqrt 3 }}{2} \Rightarrow HK = \frac{{a\sqrt 3 }}{4}.\)

Ta có \(\left\{ \begin{array}{l}{\rm{d}}\left( {I,\left( {SAB} \right)} \right){\rm{ = }}\frac{1}{2}{\rm{d}}\left( {C,\left( {SAB} \right)} \right)\\{\rm{d}}\left( {H,\left( {SAB} \right)} \right) = \frac{1}{2}{\rm{d}}\left( {C,\left( {SAB} \right)} \right)\end{array} \right.\)\( \Rightarrow {\rm{d}}\left( {I,\left( {SAB} \right)} \right) = {\rm{d}}\left( {H,\left( {SAB} \right)} \right) = HK = \frac{{a\sqrt 3 }}{4}\).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,          d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

C (ảnh 1)

Ta có \(SI\) vuông góc với đáy \(\left( {ABCD} \right)\) và \(BC = \sqrt {{{\left( {2a} \right)}^2} + {a^2}}  = a\sqrt 5 \).

Vẽ \[IH \bot CB\] tại \[H\].

Do đó, \(IH\) là hình chiếu của \(SH\) lên mặt phẳng \(\left( {ABCD} \right)\) nên \[SH \bot CB\] (theo định lý ba đường vuông góc).

Khi đó, \[\widehat {SHI}\] là góc phẳng nhị diện của góc nhị diện \(\left[ {S,BC,D} \right]\).

Ta có \[{S_{ICB}} = {S_{ABCD}} - {S_{IDC}} - {S_{AIB}}\]\[ = 3{a^2} - \frac{{{a^2}}}{2} - {a^2} = \frac{{3{a^2}}}{2}\]\[ \Rightarrow IH \cdot CB = 3{a^2}\]\[ \Rightarrow IH = \frac{{3a\sqrt 5 }}{5}\].

Ta có \[\tan \widehat {SHI} = \frac{{SI}}{{IH}}\]\[ = \frac{{\frac{{3a\sqrt 5 }}{5}}}{{\frac{{3a\sqrt 5 }}{5}}} = 1\]\[ \Rightarrow \widehat {SHI} = 45^\circ \].

Đáp án: \[45\].

Lời giải

V (ảnh 1)

Do hình chóp \[S.ABC\] đều nên \(SG\) là đường cao của hình chóp (\(G\) là trọng tâm tam giác đều \(ABC\)). Kẻ \(MH \bot SA\) tại \(H\) thì \(MH\) là đoạn vuông góc chung của \(SA\) và \(BC\).

Vậy khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng \(MH\).

Do \(\Delta ABC\) đều nên \(AM = \frac{{AB\sqrt 3 }}{2} = \frac{{7\sqrt 3 }}{2}\).

Suy ra \(AG = \frac{2}{3}AM = \frac{{7\sqrt 3 }}{3}\).

Ta có \({V_{S.ABC}} = \frac{1}{3} \cdot \frac{{{7^2}\sqrt 3 }}{4} \cdot SG = \frac{{343\sqrt 3 }}{3}\)\( \Rightarrow SG = 28\).

Lại có \(SA = \sqrt {A{G^2} + S{G^2}}  = \frac{{49\sqrt 3 }}{3}\).

Ta có \(\Delta AHM\) đồng dạng với \(\Delta AGS\)\( \Rightarrow \frac{{AM}}{{SA}} = \frac{{MH}}{{SG}} \Rightarrow MH = \frac{{SG \cdot AM}}{{SA}} = \frac{{3 \cdot 28 \cdot 7\sqrt 3 }}{{2 \cdot 49\sqrt 3 }} = 6\).

Đáp án: \(6\).

Câu 5

A. \(\frac{{\sqrt 3 }}{2}\).                                  
B. \(\frac{{\sqrt 3 }}{6}\).                               
C. \(\frac{{\sqrt 3 }}{3}\).                                                                     
D. \(\frac{{\sqrt 3 }}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{{a^3}\sqrt 3 }}{2}\).                        
B. \(\frac{{{a^3}}}{6}\).        
C. \(\frac{{{a^3}}}{2}\).        
D. \(\frac{{{a^3}\sqrt 2 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP