Câu hỏi:
17/06/2025 26
PHẦN III. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang vuông tại \[A\] và \[D\], \[AB = AD = 2a,\] \(CD = a\). Gọi \(I\) là trung điểm cạnh \[AD,\] biết hai mặt phẳng \[\left( {SBI} \right)\], \[\left( {SCI} \right)\] cùng vuông góc với đáy và \[SI = \frac{{3a\sqrt 5 }}{5}\]. Số đo góc nhị diện \(\left[ {S,BC,D} \right]\) bằng bao nhiêu độ?
PHẦN III. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang vuông tại \[A\] và \[D\], \[AB = AD = 2a,\] \(CD = a\). Gọi \(I\) là trung điểm cạnh \[AD,\] biết hai mặt phẳng \[\left( {SBI} \right)\], \[\left( {SCI} \right)\] cùng vuông góc với đáy và \[SI = \frac{{3a\sqrt 5 }}{5}\]. Số đo góc nhị diện \(\left[ {S,BC,D} \right]\) bằng bao nhiêu độ?
Quảng cáo
Trả lời:
Ta có \(SI\) vuông góc với đáy \(\left( {ABCD} \right)\) và \(BC = \sqrt {{{\left( {2a} \right)}^2} + {a^2}} = a\sqrt 5 \).
Vẽ \[IH \bot CB\] tại \[H\].
Do đó, \(IH\) là hình chiếu của \(SH\) lên mặt phẳng \(\left( {ABCD} \right)\) nên \[SH \bot CB\] (theo định lý ba đường vuông góc).
Khi đó, \[\widehat {SHI}\] là góc phẳng nhị diện của góc nhị diện \(\left[ {S,BC,D} \right]\).
Ta có \[{S_{ICB}} = {S_{ABCD}} - {S_{IDC}} - {S_{AIB}}\]\[ = 3{a^2} - \frac{{{a^2}}}{2} - {a^2} = \frac{{3{a^2}}}{2}\]\[ \Rightarrow IH \cdot CB = 3{a^2}\]\[ \Rightarrow IH = \frac{{3a\sqrt 5 }}{5}\].
Ta có \[\tan \widehat {SHI} = \frac{{SI}}{{IH}}\]\[ = \frac{{\frac{{3a\sqrt 5 }}{5}}}{{\frac{{3a\sqrt 5 }}{5}}} = 1\]\[ \Rightarrow \widehat {SHI} = 45^\circ \].
Đáp án: \[45\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(AA' = \sqrt {A'{B^2} - A{B^2}} = a\sqrt 2 \).
Diện tích tam giác \(ABC\) là: \({S_{ABC}} = \frac{1}{2}A{B^2} = \frac{{{a^2}}}{2}\).
Thể tích khối lăng trụ là \(V = AA' \cdot {S_{ABC}} = \frac{{{a^3}\sqrt 2 }}{2}\). Chọn D.
Lời giải
Gọi \(MN\) là đường mép nước ở trên mặt phẳng \(\left( {ABB'A'} \right)\), \(EF\) là đường mép nước trên mặt phẳng \(\left( {CDD'C'} \right)\).
Khi đó \(ABNM.DCEF\) là một hình chóp cụt.
Kẻ \(MH\) vuông góc với \(DD'\) tại \(H\) thì
\(HF = MH \cdot \tan 10^\circ = {\rm{tan}}10^\circ \,\,({\rm{m}})\).
Suy ra \(DF = DH - HF = AM - HF = 0,8 - {\rm{tan}}10^\circ \approx 0,62\,\,({\rm{m}})\).
Ta có \({S_1} = {S_{DCEF}} = DF \cdot CD \approx 0,62\,\,({{\rm{m}}^2});\,\,{S_2} = {S_{ABNM}} = AB \cdot AM = 0,8\,\,({{\rm{m}}^2})\).
Vậy thể tích phần nước trong bể là:
\(V = \frac{1}{3} \cdot \left( {{S_1} + {S_2} + \sqrt {{S_1}{S_2}} } \right) \cdot AD = \frac{1}{3} \cdot \left( {0,62 + 0,8 + \sqrt {0,62 \cdot 0,8} } \right) \approx 0,71\,\,({{\rm{m}}^3})\).
Đáp án: \(0,71\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.