Câu hỏi:

17/06/2025 36 Lưu

Một bể chứa nước hình hộp chữ nhật \(ABCD.A'B'C'D'\) được đặt trên một mái nhà nghiêng so với mặt đất nằm ngang góc \(10^\circ ,\,AB = 1{\rm{\;m}},\,AD = 1,5{\rm{\;m}}\), \(AA' = 1{\rm{\;m}}\). Đáy bể là hình chữ nhật \(ABCD\). Các điểm \(A,B\) cùng ở độ cao \(5{\rm{\;m}}\) (so với mặt đất), các điểm \(C,D\) ở độ cao lớn hơn so với độ cao của các điểm \(A,B\). Khi nước trong bể phẳng lặng người ta đo được khoảng cách giữa đường mép nước ở mặt phẳng \(\left( {ABB'A'} \right)\) và mặt đáy của bể là \(80{\rm{\;cm}}\). Tính thể tích của phần nước trong bể (làm tròn kết quả đến hàng phần trăm theo đơn vị mét khối).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tính thể tích của phần nước trong bể (làm tròn kết quả đến hàng phần trăm theo đơn vị mét khối). (ảnh 1)

Gọi \(MN\) là đường mép nước ở trên mặt phẳng \(\left( {ABB'A'} \right)\), \(EF\) là đường mép nước trên mặt phẳng \(\left( {CDD'C'} \right)\).

Khi đó \(ABNM.DCEF\) là một hình chóp cụt.

Kẻ \(MH\) vuông góc với \(DD'\) tại \(H\) thì

\(HF = MH \cdot \tan 10^\circ  = {\rm{tan}}10^\circ \,\,({\rm{m}})\).

Suy ra \(DF = DH - HF = AM - HF = 0,8 - {\rm{tan}}10^\circ  \approx 0,62\,\,({\rm{m}})\).

Ta có \({S_1} = {S_{DCEF}} = DF \cdot CD \approx 0,62\,\,({{\rm{m}}^2});\,\,{S_2} = {S_{ABNM}} = AB \cdot AM = 0,8\,\,({{\rm{m}}^2})\).

Vậy thể tích phần nước trong bể là:

\(V = \frac{1}{3} \cdot \left( {{S_1} + {S_2} + \sqrt {{S_1}{S_2}} } \right) \cdot AD = \frac{1}{3} \cdot \left( {0,62 + 0,8 + \sqrt {0,62 \cdot 0,8} } \right) \approx 0,71\,\,({{\rm{m}}^3})\).

Đáp án: \(0,71\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

V (ảnh 1)

Gọi \(H,K\) lần lượt là hình chiếu vuông góc của \(O,B\) trên mặt phẳng \(\left( {SCD} \right)\).      

Khi đó góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {SCD} \right)\) là góc \(\widehat {BSK} = \varphi \).

Ta có \(\sin \varphi  = \frac{{BK}}{{BS}}\). Mặt khác \(BK{\rm{//}}\,OH\) và \(\frac{{BK}}{{OH}} = \frac{{BD}}{{OD}} = 2\).

Kẻ \(OM \bot CD\), trong tam giác vuông \(SOM\) có \(\frac{1}{{O{H^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)

Ta có \(\Delta SBO = \Delta CBO\) suy ra \(CO = SO = \frac{{a\sqrt 6 }}{3}\) và \(OB = \sqrt {S{B^2} - S{O^2}}  = \frac{{a\sqrt 3 }}{3}\).

Þ\(\frac{1}{{O{H^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 6 }}{3}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 6 }}{3}} \right)}^2}}}\) Þ \(OH = \frac{a}{{\sqrt 6 }}\).

Þ\(BK = 2OH = \frac{{2a}}{{\sqrt 6 }}\)Þ\(\sin \varphi  = \frac{{\frac{{2a}}{{\sqrt 6 }}}}{a} = \frac{2}{{\sqrt 6 }}\). Suy ra \(\varphi  \approx 55^\circ \).

Đáp án: \(55\).

Lời giải

V (ảnh 1)

Do hình chóp \[S.ABC\] đều nên \(SG\) là đường cao của hình chóp (\(G\) là trọng tâm tam giác đều \(ABC\)). Kẻ \(MH \bot SA\) tại \(H\) thì \(MH\) là đoạn vuông góc chung của \(SA\) và \(BC\).

Vậy khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng \(MH\).

Do \(\Delta ABC\) đều nên \(AM = \frac{{AB\sqrt 3 }}{2} = \frac{{7\sqrt 3 }}{2}\).

Suy ra \(AG = \frac{2}{3}AM = \frac{{7\sqrt 3 }}{3}\).

Ta có \({V_{S.ABC}} = \frac{1}{3} \cdot \frac{{{7^2}\sqrt 3 }}{4} \cdot SG = \frac{{343\sqrt 3 }}{3}\)\( \Rightarrow SG = 28\).

Lại có \(SA = \sqrt {A{G^2} + S{G^2}}  = \frac{{49\sqrt 3 }}{3}\).

Ta có \(\Delta AHM\) đồng dạng với \(\Delta AGS\)\( \Rightarrow \frac{{AM}}{{SA}} = \frac{{MH}}{{SG}} \Rightarrow MH = \frac{{SG \cdot AM}}{{SA}} = \frac{{3 \cdot 28 \cdot 7\sqrt 3 }}{{2 \cdot 49\sqrt 3 }} = 6\).

Đáp án: \(6\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP