45 bài tập Xác suất có lời giải
509 người thi tuần này 4.6 2.1 K lượt thi 25 câu hỏi 50 phút
🔥 Đề thi HOT:
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Các dạng bài tập Cực trị hàm số cực hay có lời giải (P1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
214 Bài toán thực tế từ đề thi Đại học có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Gọi số tự nhiên cần tìm là \(\overline {abcd} \), từ yêu cầu bài toán ta có:
\(d \in \left\{ {1;2;3} \right\}\): có 3 cách chọn
\(a\): có 3 cách chọn \(\left( {a \ne 0,a \ne d} \right)\)
Trong 3 số còn lại chọn ra 2 số lần lượt đặt vào các vị trí \(b,c\) có \(A_3^2\) cách.
Số các số thỏa yêu cầu bài toán là \(S = 3 \cdot 3 \cdot A_3^2 = 54\) số. Chọn D.
Câu 2
A. \[B|A = \left\{ {\left( {2,1} \right);\left( {2,3} \right);\left( {4,1} \right);\left( {4,3} \right)} \right\}\].
B. \[B|A = \left\{ {\left( {2,1} \right);\left( {2,3} \right);\left( {2,4} \right);\left( {4,1} \right);\left( {4,2} \right);\left( {4,3} \right)} \right\}\].
C. \[B|A = \left\{ {\left( {1,1} \right);\left( {1,3} \right);\left( {2,1} \right);\left( {2,3} \right);\left( {3,1} \right);\left( {3,3} \right);\left( {4,1} \right);\left( {4,3} \right)} \right\}\].
Lời giải
Ta có \(A = \left\{ {\left( {2,1} \right);\left( {2,3} \right);\left( {2,4} \right);\left( {4,1} \right);\left( {4,2} \right);\left( {4,3} \right)} \right\}\);
\(B = \left\{ {\left( {1,1} \right);\left( {1,3} \right);\left( {2,1} \right);\left( {2,3} \right);\left( {3,1} \right);\left( {3,3} \right);\left( {4,1} \right);\left( {4,3} \right)} \right\}\).
Khi đó, biến cố \[C = B|A\]\[ = A \cap B = \left\{ {\left( {2,1} \right);\left( {2,3} \right);\left( {4,1} \right);\left( {4,3} \right)} \right\}\]. Chọn A.
Câu 3
Lời giải
Số cách lấy ra 2 quả cầu trong 11 quả là \(C_{11}^2\). Suy ra \(n\left( \Omega \right) = C_{11}^2\).
Gọi \(A\) là biến cố lấy được 2 quả cùng màu. Suy ra \(n\left( A \right) = C_5^2 + C_6^2\).
Xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{C_5^2 + C_6^2}}{{C_{11}^2}} = \frac{5}{{11}}\). Chọn C.
Câu 4
Lời giải
Theo công thức tính xác suất có điều kiện ta có:
\(\;P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} \Rightarrow P\left( {AB} \right) = P\left( {A|B} \right) \cdot P\left( B \right) = 0,3 \cdot 0,6 = 0,18\).
Vì \(\;\overline A B\) và \(\;AB\) là hai biến cố xung khắc và \(\;\overline A B \cup AB = B\) nên theo tính chất của xác suất, ta có: \(\;P\left( {\overline A B} \right) + P\left( {AB} \right) = P\left( B \right) \Rightarrow P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = 0,6 - 0,18 = 0,42\). Chọn B.
Câu 5
Lời giải
Xét các biến cố:
\(A\): “Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên”;
\(B\): “Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội”.
Khi đó, \(P\left( A \right) = \frac{{20}}{{36}} = \frac{5}{9};\;\;P\left( {\bar A} \right) = 1 - P\left( A \right) = 1 - \frac{5}{9} = \frac{4}{9}\).
Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội\( \Rightarrow P\left( {B\mid A} \right) = \frac{{16}}{{35}}\).
Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội\( \Rightarrow P\left( {B\mid \bar A} \right) = \frac{{15}}{{35}}\).
Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là: \(P\left( B \right) = P\left( A \right) \cdot P\left( {B\mid A} \right) + P\left( {\bar A} \right) \cdot P\left( {B\mid \bar A} \right) = \frac{5}{9} \cdot \frac{{16}}{{35}} + \frac{4}{9} \cdot \frac{{15}}{{35}} = \frac{4}{9}\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Một lớp có 40 học sinh, trong đó có 20 học sinh nam và 20 học sinh nữ. Số cách chọn một ban cán sự lớp 4 người, trong đó có ít nhất một học sinh nữ là:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 19
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 20
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 21
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 22
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 23
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 24
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 25
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.