Câu hỏi:

17/01/2025 3,153 Lưu

Một chiếc hộp có chín thẻ đánh số từ 1 đến 9. Rút ngẫu nhiên hai thẻ rồi nhân hai số ghi trên hai thẻ với nhau. Tính xác suất để kết quả nhận được là một số chẵn (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Kết quả nhận được là số chẵn khi và chỉ khi trong hai thẻ có ít nhất một thẻ chẵn.

Gọi \(A\) là biến cố “Rút được một thẻ chẵn và một thẻ lẻ”, \(B\) là biến cố “Cả hai thẻ được rút là thẻ chẵn”. Khi đó biến cố “Tích hai số ghi trên hai thẻ là một số chẵn” là \(A \cup B\).

Do hai biến cố xung khắc \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).

Vì có 4 thẻ chẵn và 5 thẻ lẻ nên ta có: \(P\left( A \right) = \frac{{C_5^1 \cdot C_4^1}}{{C_9^2}} = \frac{{20}}{{36}},P\left( B \right) = \frac{{C_4^2}}{{C_9^2}} = \frac{6}{{36}}\).

Do đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) = \frac{{20}}{{36}} + \frac{6}{{36}} = \frac{{26}}{{36}} = \frac{{13}}{{18}} \approx 0,72\).

Đáp án: 0,72.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(B\) là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ” nên \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{5}{{10}} = 0,5\).

Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh nên \(P\left( {A|B} \right) = \frac{7}{{11}}\).

Gọi \(\bar B\): “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh”.

Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh. Khi đó \(P\left( {A|\bar B} \right) = \frac{6}{{11}}\).

Ta có: \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,5 = 0,5\).

Áp dụng công thức xác suất toàn phần, ta có xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là: \(P\left( A \right) = P\left( B \right) \cdot P\left( {A|B} \right) + P\left( {\bar B} \right) \cdot P\left( {A|\bar B} \right) = 0,5 \cdot \frac{7}{{11}} + 0,5 \cdot \frac{6}{{11}} = \frac{{13}}{{22}}\).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,                    d) Đúng.

Câu 2

Lời giải

Theo công thức tính xác suất có điều kiện ta có:

\(\;P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} \Rightarrow P\left( {AB} \right) = P\left( {A|B} \right) \cdot P\left( B \right) = 0,3 \cdot 0,6 = 0,18\).

\(\;\overline A B\)\(\;AB\) là hai biến cố xung khắc và \(\;\overline A B \cup AB = B\) nên theo tính chất của xác suất, ta có: \(\;P\left( {\overline A B} \right) + P\left( {AB} \right) = P\left( B \right) \Rightarrow P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = 0,6 - 0,18 = 0,42\). Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP