Câu hỏi:

17/01/2025 16,916

Một thư viện có hai phòng riêng biệt, phòng A và phòng B. Xác suất chọn được một quyển sách về chủ đề Khoa học tự nhiên thuộc phòng A và thuộc phòng B lần lượt là \(0,25\)\(0,5\). Chọn ngẫu nhiên 1 quyển sách của thư viện. Giả sử quyển sách được chọn về chủ đề Khoa học tự nhiên, xác suất quyển sách đó ở phòng A là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét các biến cố:

M: “Quyển sách được chọn ở phòng A”;

N: “Quyển sách được chọn về chủ đề Khoa học tự nhiên”;

Q: “Quyển sách được chọn về chủ đề Khoa học tự nhiên và thuộc phòng A”;

R: “Quyển sách được chọn về chủ đề Khoa học tự nhiên và thuộc phòng B”.

Nhận thấy \(N = Q \cup R\)\(Q,R\) là hai biến cố xung khắc nên

\(P\left( N \right) = P\left( Q \right) + P\left( R \right) = 0,25 + 0,5 = 0,75\).

Ta có: \(P\left( {M|N} \right) = \frac{{P\left( {M \cap N} \right)}}{{P\left( N \right)}} = \frac{{0,25}}{{0,75}} = \frac{1}{3}\).

Vậy xác suất quyển sách được chọn ở phòng A, biết rằng quyển sách đó về chủ đề Khoa học tự nhiên là \(\frac{1}{3}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(B\) là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ” nên \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{5}{{10}} = 0,5\).

Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh nên \(P\left( {A|B} \right) = \frac{7}{{11}}\).

Gọi \(\bar B\): “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh”.

Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh. Khi đó \(P\left( {A|\bar B} \right) = \frac{6}{{11}}\).

Ta có: \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,5 = 0,5\).

Áp dụng công thức xác suất toàn phần, ta có xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là: \(P\left( A \right) = P\left( B \right) \cdot P\left( {A|B} \right) + P\left( {\bar B} \right) \cdot P\left( {A|\bar B} \right) = 0,5 \cdot \frac{7}{{11}} + 0,5 \cdot \frac{6}{{11}} = \frac{{13}}{{22}}\).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,                    d) Đúng.

Câu 2

Lời giải

Theo công thức tính xác suất có điều kiện ta có:

\(\;P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} \Rightarrow P\left( {AB} \right) = P\left( {A|B} \right) \cdot P\left( B \right) = 0,3 \cdot 0,6 = 0,18\).

\(\;\overline A B\)\(\;AB\) là hai biến cố xung khắc và \(\;\overline A B \cup AB = B\) nên theo tính chất của xác suất, ta có: \(\;P\left( {\overline A B} \right) + P\left( {AB} \right) = P\left( B \right) \Rightarrow P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = 0,6 - 0,18 = 0,42\). Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP